In Vitro Antimicrobial Activity of Camel Urine Lactoferrin
Main Article Content
Abstract
Lactoferrin, an iron-binding glycoprotein found in various bodily fluids, is widely recognized for its broad-spectrum antimicrobial properties. This study evaluates the in vitro antibacterial and antifungal activity of lactoferrin isolated from camel urine against selected microbial strains. The purified lactoferrin demonstrated notable antibacterial efficacy, producing zones of inhibition ranging from 12–19 mm against Staphylococcus aureus, 10–16 mm against Bacillus subtilis, and 13–21 mm against Escherichia coli. Additionally, antifungal activity was observed against Candida albicans, with inhibition zones ranging from 11–18 mm. The antimicrobial mechanisms are attributed to iron sequestration and disruption of microbial cell membranes in bacteria, and inhibition of fungal growth via interference with cell wall synthesis and membrane integrity. These findings underscore the potential of camel urine-derived lactoferrin as a natural antimicrobial agent and contribute to the growing body of research exploring its biochemical and therapeutic properties.
Downloads
Article Details

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
Abdel Gader, A. G. M., & Alhaider, A. A. (2016). The unique medicinal properties of camel products: A review of the scientific evidence. Journal of Taibah University Medical Sciences, 11(2), 98–103. https://doi.org/10.1016/j.jtumed.2015.12.007
Akdaşçi, E., Eker, F., Duman, H., Singh, P., Bechelany, M., & Karav, S. (2024). Lactoferrin as a versatile agent in nanoparticle applications: From therapeutics to agriculture. Nanomaterials, 14(24), 2018.
Ashraf, M. F., Zubair, D., Bashir, M. N., Alagawany, M., Ahmed, S., Shah, Q. A., Buzdar, J. A., & Arain, M. A. (2024). Nutraceutical and health-promoting potential of lactoferrin, an iron-binding protein in human and animal: current knowledge. Biological Trace Element Research, 202(1), 56–72.
Avalos-Gómez, C., Ramírez-Rico, G., Ruiz-Mazón, L., Sicairos, N. L., Serrano-Luna, J., & de la Garza, M. (2022). Lactoferrin: an effective weapon in the battle against bacterial infections. Current Pharmaceutical Design, 28(40), 3243–3260.
Blais, A., Takakura, N., Grauso, M., Puel-Artero, C., Blachier, F., & Lan, A. (2024). Dietary bovine lactoferrin reduces the deleterious effects of lipopolysaccharide injection on mice intestine. Nutrients, 16(23), 4040.
Bobreneva, I. V, & Rokhlova, M. V. (2021). Lactoferrin: properties and application. A review. Теория и Практика Переработки Мяса, 6(2), 128–134.
Brouwer, C., Welling, M. M., Alwasel, S., & Boekhout, T. (2025). Potential health benefits of lactoferrin and derived peptides–how to qualify as a medical device? Critical Reviews in Microbiology, 1–25.
Casu, C., Butera, A., Piga, A., Scribante, A., Fais, S., & Orrù, G. (2025). Lactoferrin Solution as a New Natural Photosensitizer in Photodynamic Therapy Against Oral Candida spp. Multidrug-Resistant Isolates: A Preliminary In Vitro Study. Microorganisms, 13(6), 1255.
Chang, C.-K., Kao, M.-C., & Lan, C.-Y. (2021). Antimicrobial activity of the peptide LfcinB15 against Candida albicans. Journal of Fungi, 7(7), 519.
Chasteen, N. D., & Woodworth, R. C. (2024). Transferrin and lactoferrin. In Iron transport and storage (pp. 67–79). CRC Press.
Długosz, A., Wróblewska, J., Kołaczyk, P., & Wróblewska, W. (2025). The Role of Lactoferrin in Combating Candida spp. Infections Through Regulation of Oxidative Stress, Immune Response, and Nutritional Support in Women and Newborns. Molecules, 30(11), 2416.
Fernandes, K. E., & Carter, D. A. (2017). The Antifungal Activity of Lactoferrin and Its Derived Peptides: Mechanisms of Action and Synergy with Drugs against Fungal Pathogens. Frontiers in Microbiology, 8, 2. https://doi.org/10.3389/fmicb.2017.00002
Gruden, Š., & Poklar Ulrih, N. (2021). Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides. International Journal of Molecular Sciences, 22(20), 11264.
Hong, R., Xie, A., Jiang, C., Guo, Y., Zhang, Y., Chen, J., Shen, X., Li, M., & Yue, X. (2024). A review of the biological activities of lactoferrin: Mechanisms and potential applications. Food & Function.
Ianiro, G., Rosa, L., Bonaccorsi di Patti, M. C., Valenti, P., Musci, G., & Cutone, A. (2023). Lactoferrin: From the structure to the functional orchestration of iron homeostasis. Biometals, 36(3), 391–416.
Jin, L., Li, L., Zhang, W., Zhang, R., & Xu, Y. (2022). Heterologous expression of bovine lactoferrin C-lobe in Bacillus subtilis and comparison of its antibacterial activity with N-lobe. Systems Microbiology and Biomanufacturing, 1–10.
Kaczmarek, K. A., Kosewski, G., Dobrzyńska, M., & Drzymała-Czyż, S. (2025). Lactoferrin Production: A Systematic Review of the Latest Analytical Methods. Applied Sciences, 15(8), 4540.
Kim, J. W., Lee, J. S., Choi, Y. J., & Kim, C. (2025). The Multifaceted Functions of Lactoferrin in Antimicrobial Defense and Inflammation. Biomolecules, 15(8), 1174.
Kowalczyk, P., Kaczyńska, K., Kleczkowska, P., Bukowska-Ośko, I., Kramkowski, K., & Sulejczak, D. (2022). The lactoferrin phenomenon—a miracle molecule. Molecules, 27(9), 2941.
Lai, Y.-W., Campbell, L. T., Wilkins, M. R., Pang, C. N. I., Chen, S., & Carter, D. A. (2016). Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus. International Journal of Antimicrobial Agents, 48(4), 388–394. https://doi.org/10.1016/j.ijantimicag.2016.06.012
Mayeur, S., Spahis, S., Pouliot, Y., & Levy, E. (2016). Lactoferrin, a Pleiotropic Protein in Health and Disease. Antioxidants & Redox Signaling, 24(14), 813–836. https://doi.org/10.1089/ars.2015.6458
Morgenthau, A., Beddek, A., & Schryvers, A. B. (2014). The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides. PLOS One, 9(1), e86243.
Ongena, R., Dierick, M., Vanrompay, D., Cox, E., & Devriendt, B. (2024). Lactoferrin impairs pathogen virulence through its proteolytic activity. Frontiers in Veterinary Science, 11, 1428156.
Ostan, N. K. H., Moraes, T. F., & Schryvers, A. B. (2021). Lactoferrin receptors in Gram-negative bacteria: an evolutionary perspective. Biochemistry and Cell Biology, 99(1), 102–108.
Ostrowska, M., Brzozowski, B., Babuchowski, A., & Adamczak, M. (2025). Biologically Active Components of Milk—Production and Properties of Lactoferrin. Processes, 13(6), 1620.
Pan, S., Weng, H., Hu, G., Wang, S., Zhao, T., Yao, X., Liao, L., Zhu, X., & Ge, Y. (2021). Lactoferrin may inhibit the development of cancer via its immunostimulatory and immunomodulatory activities. International Journal of Oncology, 59(5), 1–11.
Piacentini, R., Boffi, A., & Milanetti, E. (2024). Lactoferrins in Their Interactions with Molecular Targets: A Structure-Based Overview. Pharmaceuticals, 17(3), 398.
Sachivkina, N., Podoprigora, I., & Bokov, D. (2021). Morphological characteristics of Candida albicans, Candida krusei, Candida guilliermondii, and Candida glabrata biofilms, and response to farnesol. Veterinary World, 14(6), 1608.
Sienkiewicz, M., Jaśkiewicz, A., Tarasiuk, A., & Fichna, J. (2022). Lactoferrin: An overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Critical Reviews in Food Science and Nutrition, 62(22), 6016–6033.
Usman, H., & Osuji, J. C. (2007). Phytochemical and in vitro antimicrobial assay of the leaf extract of Newbouldia laevis. African Journal of Traditional, Complementary, and Alternative Medicines : AJTCAM, 4(4), 476–480.
Volleková, A., Košťálová, D., & Sochorová, R. (2001). Isoquinoline alkaloids fromMahonia aquifolium stem bark are active againstMalassezia spp. Folia Microbiologica, 46(2), 107–111. https://doi.org/10.1007/BF02873586
Wang, B., Timilsena, Y. P., Blanch, E., & Adhikari, B. (2019). Lactoferrin: Structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition, 59(4), 580–596. https://doi.org/10.1080/10408398.2017.1381583
Yalçın, S., & Bonabian, E. F. (2025). Candida albicans Impact on the Progression, Morphology, and Cellular Integrity of Biofilm Formation on the Surfaces of Implants; Current Knowledge and Future Perspectives. International Journal of Molecular and Cellular Medicine, 14(2), 620.
Zhang, X., Xi, Z., Zhao, H., Zhang, W., Xu, Y., & Zhang, R. (2025). Efficient heterologous expression of bovine lactoferrin in Pichia pastoris and characterization of antibacterial activity. Systems Microbiology and Biomanufacturing, 5(1), 237–248.
Find the perfect home for your research! If this journal isn't the right fit, don't worry—we offer a wide range of journals covering diverse fields of study. Explore our other journals to discover the ideal platform for your work and maximize its impact. Browse now and take the next step in publishing your research:
| HOME | Yasin | AlSys | Anwarul | Masaliq | Arzusin | Tsaqofah | Ahkam | AlDyas | Mikailalsys | Edumalsys | Alsystech | AJSTEA | AJECEE | AJISD | IJHESS | IJEMT | IJECS | MJMS | MJAEI | AMJSAI | AJBMBR | AJSTM | AJCMPR | AJMSPHR | KIJST | KIJEIT | KIJAHRS |


















