Purification and Characterization of Lactoferrin from Camel Urine
Main Article Content
Abstract
This study reports the isolation, purification, characterization, and antimicrobial activity of lactoferrin derived from camel urine. The lactoferrin was purified through a sequential process involving acetone precipitation, dialysis, ion exchange chromatography, and gel filtration. The partially purified protein was then characterized with respect to its molecular weight, pH and temperature optima, metal ion interaction, and thermal stability. The purification process achieved a 3.23-fold increase in purity with a specific activity of 6.33 U/mg protein and an overall yield of 9.74%. The purified lactoferrin exhibited a molecular weight of 75 kDa and demonstrated optimal activity at pH 7.0 and 40 °C in 50 mM sodium phosphate buffer. Among the metal ions tested, Zn²⁺ enhanced lactoferrin activity, while Mg²⁺ and Al³⁺ acted as strong inhibitors. These findings confirm the potential of camel urine as a novel and viable source of bioactive lactoferrin and lay the groundwork for further biotechnological exploration of its therapeutic applications.
Downloads
Article Details

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
Al-Numair, N. S., Theyab, A., Alzahrani, F., Shams, A. M., Al-Anazi, I. O., Oyouni, A. A. A., Al-Amer, O. M., Mavromatis, C., Saadeldin, I. M., & Abdali, W. A. (2022). Camels’ biological fluids contained nanobodies: promising avenue in cancer therapy. Cancer Cell International, 22(1), 279.
Alkhamees, O. A., & Alsanad, S. M. (2017). A REVIEW OF THE THERAPEUTIC CHARACTERISTICS OF CAMEL URINE. African Journal of Traditional, Complementary and Alternative Medicines, 14(6), 120–126. https://doi.org/10.21010/ajtcam.v14i6.12
Alkhulaifi, M. M., Alosaimi, M. M., Khan, M. S., Tabrez, S., Shaik, G. M., Alokail, M. S., Hassan, M. A., Awadalla, M. E., & Husain, F. M. (2024). Assessment of broad-spectrum antimicrobial, antibiofilm, and anticancer potential of lactoferrin extracted from camel milk. Applied Biochemistry and Biotechnology, 196(3), 1464–1480.
Amina, R., Habiba, R., & Abouddihaj, B. (2024). Camel urine as a potential source of bioactive molecules showing their efficacy against pathogens: A systematic review. Saudi Journal of Biological Sciences, 103966.
Arao, S., Matsuura, S., Nonomura, M., Miki, K., Kabasawa, K., & Nakanishi, H. (1999). Measurement of urinary lactoferrin as a marker of urinary tract infection. Journal of Clinical Microbiology, 37(3), 553–557.
Avalos-Gómez, C., Ramírez-Rico, G., Ruiz-Mazón, L., Sicairos, N. L., Serrano-Luna, J., & de la Garza, M. (2022). Lactoferrin: an effective weapon in the battle against bacterial infections. Current Pharmaceutical Design, 28(40), 3243–3260.
Bobreneva, I. V, & Rokhlova, M. V. (2021). Lactoferrin: properties and application. A review. Теория и Практика Переработки Мяса, 6(2), 128–134.
Boesman-Finkelstein, M., & Finkelstein, R. A. (1982). Sequential purification of lactoferrin, lysozyme and secretory immunoglobulin A from human milk. FEBS Letters, 144(1), 1–5.
Bradford, M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999
Brisson, G., Britten, M., & Pouliot, Y. (2007). Heat-induced aggregation of bovine lactoferrin at neutral pH: Effect of iron saturation. International Dairy Journal, 17(6), 617–624.
Chasteen, N. D., & Woodworth, R. C. (2024). Transferrin and lactoferrin. In Iron transport and storage (pp. 67–79). CRC Press.
de Sautu, M., Saffioti, N. A., & Mangialavori, I. C. (2024). Aluminum Toxicity. In Toxicology of Essential and Xenobiotic Metals (pp. 33–58). CRC Press.
Dyrda-Terniuk, T., & Pomastowski, P. (2023). The Multifaceted Roles of Bovine Lactoferrin: Molecular Structure, Isolation Methods, Analytical Characteristics, and Biological Properties. Journal of Agricultural and Food Chemistry, 71(51), 20500–20531.
Elagamy, E. I., Ruppanner, R., Ismail, A., Champagne, C. P., & Assaf, R. (1996). Purification and characterization of lactoferrin, lactoperoxidase, lysozyme and immunoglobulins from camel’s milk. International Dairy Journal, 6(2), 129–145.
Goulding, D. A., O’Regan, J., Bovetto, L., O’Brien, N. M., & O’Mahony, J. A. (2021). Influence of thermal processing on the physicochemical properties of bovine lactoferrin. International Dairy Journal, 119, 105001.
Gruden, Š., & Poklar Ulrih, N. (2021). Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides. International Journal of Molecular Sciences, 22(20), 11264.
Hashizume, S., Kuroda, K., & Murakami, H. (1987). Cell culture assay of biological activity of lactoferrin and transferrin. Methods in Enzymology, 147, 302–314. https://doi.org/10.1016/0076-6879(87)47120-6
Hassan, M., Zaghloul, D., Mahmoud, M., Moaty, Z., & Toghan, R. (2021). Protective effect of lactoferrin against chromium induced adverse renal changes in rats: oxidative stress theory. Am. J. Biochem. Biotechnol, 17(2), 181–191.
Ho, C.-Y., Lu, P.-C., Chen, W.-L., Liao, W.-T., Hsu, C.-N., & Tain, Y.-L. (2024). Lactoferrin in Pediatric Chronic Kidney Disease and Its Relationship with Cardiovascular Risk. Children, 11(9), 1124.
Ianiro, G., Rosa, L., Bonaccorsi di Patti, M. C., Valenti, P., Musci, G., & Cutone, A. (2023). Lactoferrin: From the structure to the functional orchestration of iron homeostasis. Biometals, 36(3), 391–416.
Inagaki, M., Kikuchi, M., Orino, K., Ohnami, Y., & Watanabe, K. (2002). Purification and quantification of lactoferrin in equine seminal plasma. Journal of Veterinary Medical Science, 64(1), 75–77.
Jańczuk, A., Brodziak, A., Czernecki, T., & Król, J. (2022). Lactoferrin—the health-promoting properties and contemporary application with genetic aspects. Foods, 12(1), 70.
Karav, S., German, J. B., Rouquié, C., Le Parc, A., & Barile, D. (2017). Studying lactoferrin N-glycosylation. International Journal of Molecular Sciences, 18(4), 870.
Kim, K.-S., Kim, J.-S., Shin, M.-S., Noh, H.-W., Lim, S.-D., Suvd, D., & Alimaa, J. (2009). Purification and characterization of Mongolian mare lactoferrin. Journal of Dairy Science, 29(2), 164–167.
Kiy, R. (2024). Investigating potential mitochondrial mechanisms of, and understanding the effect of mitochondrial genome on, antimicrobial-induced liver injury. University of Liverpool.
Kowalczyk, P., Kaczyńska, K., Kleczkowska, P., Bukowska-Ośko, I., Kramkowski, K., & Sulejczak, D. (2022). The lactoferrin phenomenon—a miracle molecule. Molecules, 27(9), 2941.
Levay, P. F., & Viljoen, M. (1995). Lactoferrin: a general review. Haematologica, 80(3), 252–267.
Lewinski, M., Brüggemann, M., Köster, T., Reichel, M., Bergelt, T., Meyer, K., König, J., Zarnack, K., & Staiger, D. (2024). Mapping protein–RNA binding in plants with individual-nucleotide-resolution UV cross-linking and immunoprecipitation (plant iCLIP2). Nature Protocols, 19(4), 1183–1234.
Liu, J., Wang, J., Yin, M., Zhu, H., Lu, J., & Cui, Z. (2011). Purification and characterization of superoxide dismutase from garlic. Food and Bioproducts Processing, 89(4), 294–299. https://doi.org/10.1016/j.fbp.2010.07.003
Lönnerdal, B. (2009). Nutritional roles of lactoferrin. Current Opinion in Clinical Nutrition & Metabolic Care, 12(3), 293–297.
Lönnerdal, B., & Iyer, S. (1995). Lactoferrin: molecular structure and biological function. Annual Review of Nutrition, 15(1), 93–110.
Majka, G., Śpiewak, K., Kurpiewska, K., Heczko, P., Stochel, G., Strus, M., & Brindell, M. (2013). A high-throughput method for the quantification of iron saturation in lactoferrin preparations. Analytical and Bioanalytical Chemistry, 405(15), 5191–5200. https://doi.org/10.1007/s00216-013-6943-9
Mayeur, S., Spahis, S., Pouliot, Y., & Levy, E. (2016). Lactoferrin, a Pleiotropic Protein in Health and Disease. Antioxidants & Redox Signaling, 24(14), 813–836. https://doi.org/10.1089/ars.2015.6458
Narmuratova, M., Narmuratova, Z., Kanayat, S., Meldebekova, A., & Yusof, Y. A. (2024). In silico determination of physicochemical properties of lactoferrin peptides isolated from equine milk. ES Food & Agroforestry, 17, 1196.
Pan, S., Weng, H., Hu, G., Wang, S., Zhao, T., Yao, X., Liao, L., Zhu, X., & Ge, Y. (2021). Lactoferrin may inhibit the development of cancer via its immunostimulatory and immunomodulatory activities. International Journal of Oncology, 59(5), 1–11.
Phillips, A. T., & Signs, M. W. (2004). Desalting, concentration, and buffer exchange by dialysis and ultrafiltration. Current Protocols in Protein Science, 38(1), 4.
Piacentini, R., Boffi, A., & Milanetti, E. (2024). Lactoferrins in Their Interactions with Molecular Targets: A Structure-Based Overview. Pharmaceuticals, 17(3), 398.
Pryshchepa, O., Rafińska, K., Gołębiowski, A., Sugajski, M., Sagandykova, G., Madajski, P., Buszewski, B., & Pomastowski, P. (2022). Synthesis and physicochemical characterization of bovine lactoferrin supersaturated complex with iron (III) ions. Scientific Reports, 12(1), 12695a.
Pryshchepa, O., Sagandykova, G., Rudnicka, J., Pomastowski, P., Sprynskyy, M., & Buszewski, B. (2022). Synthesis and physicochemical characterization of zinc-lactoferrin complexes. Journal of Dairy Science, 105(3), 1940–1958b.
Radosavljević, J., Stanić-Vučinić, D., Stojadinović, M., Radomirović, M., Simović, A., Radibratović, M., & Veličković, T. Ć. (2022). Application of ion exchange and adsorption techniques for separation of whey proteins from bovine milk. Current Analytical Chemistry, 18(3), 341–359.
Rosa, L., Cutone, A., Ianiro, G., Valenti, P., & Paesano, R. (2024). Lactoferrin in the treatment of interstitial cystitis: a retrospective pilot study. Biochemistry and Cell Biology, 102(6), 506–514.
Santos-Pereira, C., Rocha, J. F., Fernandes, H. S., Rodrigues, L. R., Corte-Real, M., & Sousa, S. F. (2021). The milk-derived lactoferrin inhibits V-ATPase activity by targeting its V1 domain. International Journal of Biological Macromolecules, 186, 54–70.
Shimazaki, K., Tazume, T., Uji, K., Tanaka, M., Kumura, H., Mikawa, K., & Shimo-oka, T. (1998). Properties of a Heparin-binding Peptide Derived from Bovine Lactoferrin. Journal of Dairy Science, 81(11), 2841–2849. https://doi.org/10.3168/jds.S0022-0302(98)75843-6
Shini, V. S., Udayarajan, C. T., & Nisha, P. (2022). A comprehensive review on lactoferrin: A natural multifunctional glycoprotein. Food & Function, 13(23), 11954–11972.
Sienkiewicz, M., Jaśkiewicz, A., Tarasiuk, A., & Fichna, J. (2022). Lactoferrin: An overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Critical Reviews in Food Science and Nutrition, 62(22), 6016–6033.
Simpson, D. M., & Beynon, R. J. (2010). Acetone precipitation of proteins and the modification of peptides. Journal of Proteome Research, 9(1), 444–450.
Thongboonkerd, V., Mcleish, K. R., Arthur, J. M., & Klein, J. B. (2002). Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney International, 62(4), 1461–1469.
Tran, T. H., Tran, P. T. T., & Truong, D. H. (2023). Lactoferrin and Nanotechnology: The Potential for Cancer Treatment. Pharmaceutics, 15(5), 1362. https://doi.org/10.3390/pharmaceutics15051362
Tsuda, H., Sekine, K., Fujita, K., & Ligo, M. (2002). Cancer prevention by bovine lactoferrin and underlying mechanisms--a review of experimental and clinical studies. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire, 80(1), 131–136. https://doi.org/10.1139/o01-239
Wu, H. F., Monroe, D. M., & Church, F. C. (1995). Characterization of the glycosaminoglycan-binding region of lactoferrin. Archives of Biochemistry and Biophysics, 317(1), 85–92.
Yoshida, S. (1989). Preparation of lactoferrin by hydrophobic interaction chromatography from milk acid whey. Journal of Dairy Science, 72(6), 1446–1450.
Yoshida, S., Wei, Z., Shinmura, Y., & Fukunaga, N. (2000). Separation of Lactoferrin-a and -b from Bovine Colostrum. Journal of Dairy Science, 83(10), 2211–2215. https://doi.org/10.3168/jds.S0022-0302(00)75104-6
Zeng, Q., Liu, Y., Sun, J., & Jin, Y. (2023). Providing new insights on the molecular properties and thermal stability of ovotransferrin and lactoferrin. Foods, 12(3), 532.
Zhang, X., Xi, Z., Zhao, H., Zhang, W., Xu, Y., & Zhang, R. (2025). Efficient heterologous expression of bovine lactoferrin in Pichia pastoris and characterization of antibacterial activity. Systems Microbiology and Biomanufacturing, 5(1), 237–248.
Zlatina, K., & Galuska, S. P. (2021). The N-glycans of lactoferrin: More than just a sweet decoration. Biochemistry and Cell Biology, 99(1), 117–127.
Zumoffen, C. M., Gil, R., Caille, A. M., Morente, C., Munuce, M. J., & Ghersevich, S. A. (2013). A protein isolated from human oviductal tissue in vitro secretion, identified as human lactoferrin, interacts with spermatozoa and oocytes and modulates gamete interaction. Human Reproduction, 28(5), 1297–1308.
Find the perfect home for your research! If this journal isn't the right fit, don't worry—we offer a wide range of journals covering diverse fields of study. Explore our other journals to discover the ideal platform for your work and maximize its impact. Browse now and take the next step in publishing your research:
| HOME | Yasin | AlSys | Anwarul | Masaliq | Arzusin | Tsaqofah | Ahkam | AlDyas | Mikailalsys | Edumalsys | Alsystech | AJSTEA | AJECEE | AJISD | IJHESS | IJEMT | IJECS | MJMS | MJAEI | AMJSAI | AJBMBR | AJSTM | AJCMPR | AJMSPHR | KIJST | KIJEIT | KIJAHRS |


















