Inhibitory Effect of Heparin Inhibitor on Camel Urine Lactoferrin
Main Article Content
Abstract
Lactoferrin, an iron-binding protein of the transferrin family, is a basic protein known for its interaction with acidic biomolecules, including heparin proteoglycans. These interactions can influence lactoferrin’s biological functions. This study investigates the inhibitory effect of heparin on lactoferrin activity, revealing a dose-dependent inhibition correlating with increased heparin concentration. Kinetic analysis yielded a Vₘₐₓ of 7.01 U/min, Kₘ of 1037.66 µM, and Kₐₜ of 8.73 × 10⁻¹⁸ s⁻¹, reflecting the enzyme’s catalytic efficiency. Inhibition studies showed that heparin acts as a non-competitive inhibitor, with an IC₅₀, Kᵢ, and K???? all equal to 102.06 µM, indicating moderate affinity for lactoferrin. A binding constant (Kᵦ) of 0.0098 µM⁻¹ further supports this moderate binding interaction. These findings suggest that heparin binds to the N-terminal region of lactoferrin, modulating its function through non-competitive inhibition. The study provides insights into the biochemical regulation of lactoferrin and its interaction with glycosaminoglycans, with potential implications for therapeutic applications involving inflammation and host defense mechanisms.
Downloads
Article Details

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
Akdaşçi, E., Eker, F., Duman, H., Singh, P., Bechelany, M., & Karav, S. (2024). Lactoferrin as a versatile agent in nanoparticle applications: From therapeutics to agriculture. Nanomaterials, 14(24), 2018.
Avalos-Gómez, C., Ramírez-Rico, G., Ruiz-Mazón, L., Sicairos, N. L., Serrano-Luna, J., & de la Garza, M. (2022). Lactoferrin: an effective weapon in the battle against bacterial infections. Current Pharmaceutical Design, 28(40), 3243–3260.
Bobreneva, I. V, & Rokhlova, M. V. (2021). Lactoferrin: properties and application. A review. Теория и Практика Переработки Мяса, 6(2), 128–134.
Bolesławska, I., Bolesławska-Król, N., Jakubowski, K., Przysławski, J., & Drzymała-Czyż, S. (2025). Lactoferrin—A Regulator of Iron Homeostasis and Its Implications in Cancer. Molecules, 30(7), 1507.
Brown, M. H., Brightman, A. H., Fenwick, B. W., & Rider, M. A. (1996). Identification of lactoferrin in bovine tears. American Journal of Veterinary Research, 57(9), 1369–1372.
Capitani, F. (2025). Il latte umano e le sue proprietà antivirali: focus sulla caratterizzazione dei glicosaminoglicani e del loro ruolo nelle infezioni virali di interesse pediatrico.
Cheng, Y. C., & Prusoff, W. H. (1973). Biochemical Pharmacology. In Relationship between I50 and Ki (23rd ed., Vol. 22).
Copeland, R. A. (2000). Enzymes: a practical introduction to structure, mechanism and data analysis” Second edition, Wiley-VCH, Inc, New York.
Dyrda-Terniuk, T., & Pomastowski, P. (2023). The Multifaceted Roles of Bovine Lactoferrin: Molecular Structure, Isolation Methods, Analytical Characteristics, and Biological Properties. Journal of Agricultural and Food Chemistry, 71(51), 20500–20531.
Elass-Rochard, E., Roseanu, A., Legrand, D., Trif, M., Salmon, V., Motas, C., Montreuil, J., & Spik, G. (1995). Lactoferrin-lipopolysaccharide interaction: involvement of the 28-34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide. Biochemical Journal, 312(3), 839–845.
Glumoff, T. (2009). On the determination of enzyme structure, function and mechanism. In Physiology and maintenance : Vol. II. EOLSS Publishers Co Ltd.
Holail, J., Sukkarieh, H. H., & Aljada, A. (2025). Expanding the Role of Heparin Derivatives in Oncology: From Anticoagulation to Antitumor Activity. Pharmaceuticals, 18(3), 396.
Hong, R., Xie, A., Jiang, C., Guo, Y., Zhang, Y., Chen, J., Shen, X., Li, M., & Yue, X. (2024). A review of the biological activities of lactoferrin: Mechanisms and potential applications. Food & Function.
Hoxha, B., & Hodaj, A. (2021). Potential role of lactoferrin and heparin in COVID-19: A review. Eur. Sci. J. ESJ, 17, 14–23.
Hu, F., Zhang, X., Gong, Z., Wu, P., Zhao, Q., Zheng, Y., Gao, H., Chou, S.-H., Li, X., & Zhong, M. (2025). Domain interactions in a chimeric dual-domain lysin lead to broad bactericidal activity. Journal of Molecular Biology, 169373.
Hwang, H. H., Kim, H. S., & Lee, D. Y. (2023). Gastrointestinally absorbable lactoferrin-heparin conjugate with anti-angiogenic activity for treatment of brain tumor. Journal of Controlled Release, 355, 730–744. https://doi.org/10.1016/j.jconrel.2023.02.002
Kaplan, M., Baktıroğlu, M., Kalkan, A. E., Canbolat, A. A., Lombardo, M., Raposo, A., de Brito Alves, J. L., Witkowska, A. M., & Karav, S. (2024). Lactoferrin: A promising therapeutic molecule against human papillomavirus. Nutrients, 16(18), 3073.
Kell, D. B., Heyden, E. L., & Pretorius, E. (2020). The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Frontiers in Immunology, 11, 1221. https://doi.org/10.3389/fimmu.2020.01221
Koirala, N., Poudel, M., Shrivastava, A. K., Subba, R. K., Panthi, M., Paudel, S., Almarhoon, Z. M., Sharifi-Rad, J., & Calina, D. (2025). Multifaceted role of heparin in oncology: from anticoagulation to anticancer mechanisms and clinical implications. Discover Oncology, 16(1), 231.
Kowalczyk, P., Kaczyńska, K., Kleczkowska, P., Bukowska-Ośko, I., Kramkowski, K., & Sulejczak, D. (2022). The lactoferrin phenomenon—a miracle molecule. Molecules, 27(9), 2941.
Kumar, V., Kumar Yadav, V., Imtaiyaz Hassan, M., Kumar Singh, A., Dey, S., Singh, S., P.Singh, T., & Yadav, S. (2012). Kinetic and Structural Studies on the Interactions of Heparin and Proteins of Human Seminal Plasma using Surface Plasmon Resonance. Protein & Peptide Letters, 19(8), 795–803. https://doi.org/10.2174/092986612801619525
Lisi, S., Pinchera, A., McCluskey, R., Chiovato, L., & Marino, M. (2002). Binding of heparin to human thyroglobulin (Tg) involves multiple binding sites including a region corresponding to a binding site of rat Tg. European Journal of Endocrinology, 591–602. https://doi.org/10.1530/eje.0.1460591
Meher, M. K., Naidu, G., Mishra, A., & Poluri, K. M. (2024). A review on multifaceted biomedical applications of heparin nanocomposites: Progress and prospects. International Journal of Biological Macromolecules, 129379.
Meng, Q., Jiang, H., Tu, J., He, Y., Zhou, Z., Wang, R., Jin, W., Han, J., & Liu, W. (2024). Effect of pH, protein/polysaccharide ratio and preparation method on the stability of lactoferrin-polysaccharide complexes. Food Chemistry, 456, 140056.
Mohammadabadi, T. (2021). The camel milk lactoferrin against different viral infections and COVID-19. Journal of Global Biosciences, 10(10), 9009–9017.
PEJLER, G. (1996). Lactoferrin regulates the activity of heparin proteoglycan-bound mast cell chymase: characterization of the binding of heparin to lactoferrin. Biochemical Journal, 320(3), 897–903. https://doi.org/10.1042/bj3200897
Roşeanu, A., Chelu, F., Trif, M., Motaş, C., & Brock, J. H. (2000). Inhibition of binding of lactoferrin to the human promonocyte cell line THP-1 by heparin: the role of cell surface sulphated molecules. Biochimica et Biophysica Acta (BBA) - General Subjects, 1475(1), 35–38. https://doi.org/10.1016/S0304-4165(00)00042-8
Roseanu, A., Florian, P. E., Moisei, M., Sima, L. E., Evans, R. W., & Trif, M. (2010). Liposomalization of lactoferrin enhanced its anti-tumoral effects on melanoma cells. BioMetals, 23(3), 485–492. https://doi.org/10.1007/s10534-010-9312-6
Sebaugh, J. L. (2011). Guidelines for accurate EC50/IC50 estimation. Pharmaceutical Statistics, 10(2), 128–134.
Soboleva, S. E., Sedykh, S. E., Alinovskaya, L. I., Buneva, V. N., & Nevinsky, G. A. (2019). Cow milk lactoferrin possesses several catalytic activities. Biomolecules, 9(6), 208.
Sultana, R., & Kamihira, M. (2024). Multifaceted Heparin: Diverse Applications beyond Anticoagulant Therapy. Pharmaceuticals, 17(10), 1362.
Wang, B., Timilsena, Y. P., Blanch, E., & Adhikari, B. (2019). Lactoferrin: Structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition, 59(4), 580–596. https://doi.org/10.1080/10408398.2017.1381583
Weiss, R. J. (2015). Targeting Glycosaminoglycans with Small Molecules: Design, Synthesis, and Applications. University of California, San Diego.
Wu, H. M., & Church, F. C. (2003). Arginine 25 and Arginine 28 of lactoferrin are critical for effective heparin neutralization in blood. Archives of Biochemistry and Biophysics, 412(1), 121–125. https://doi.org/10.1016/S0003-9861(03)00035-3
Yu, X. (2025). Role and mechanism of heparin in cardiovascular system. Discover Applied Sciences, 7(4), 1–7.
Zhang, Y., Ma, N., Wang, L., Liu, L., Wang, T., Liu, H., & Qian, W. (2024). Real-Time Study of the Specific Interactions of Lactoferrin with Mimicked Heparan Sulfate Meshes Using Ordered Porous Layer Interferometry. Analytical Chemistry, 96(36), 14413–14423. https://doi.org/10.1021/acs.analchem.4c01808
Zou, S., Magura, C. E., & Hurley, W. L. (1992). Heparin-binding properties of lactoferrin and lysozyme. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 103(4), 889–895. https://doi.org/10.1016/0305-0491(92)90210-I
Find the perfect home for your research! If this journal isn't the right fit, don't worry—we offer a wide range of journals covering diverse fields of study. Explore our other journals to discover the ideal platform for your work and maximize its impact. Browse now and take the next step in publishing your research:
| HOME | Yasin | AlSys | Anwarul | Masaliq | Arzusin | Tsaqofah | Ahkam | AlDyas | Mikailalsys | Edumalsys | Alsystech | AJSTEA | AJECEE | AJISD | IJHESS | IJEMT | IJECS | MJMS | MJAEI | AMJSAI | AJBMBR | AJSTM | AJCMPR | AJMSPHR | KIJST | KIJEIT | KIJAHRS |


















