Volatile Organic Compound in the Environment: Sources, Exposure and Mitigation

Page Numbers: 356-384
Published: 2024-07-31
Digital Object Identifier: 10.58578/amjsai.v1i1.3545
Save this to:
Article Metrics:
Viewed : 25 times
Downloaded : 17 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • A.M. Abakpa Federal University Wukari, Taraba State, Nigeria
  • T Japhet Federal University Wukari, Taraba State, Nigeria
  • Precious Omale University of Ibadan, Nigeria
  • BB Chiyam Benue State University, Makurdi, Nigeria
  • Inedu Peter Benue State University, Makurdi, Nigeria
  • Grace Otinu Abu Benue State University, Makurdi, Nigeria

Abstract

Volatile Organic Compounds (VOCs) constitute a diverse group of carbon-based chemicals that vaporize under normal environmental conditions. Their ubiquitous presence in the environment arises from both natural and anthropogenic sources, including industrial processes, vehicle emissions, and biological activities. This review explores the sources, exposure pathways, and mitigation strategies associated with VOCs in the environment. Anthropogenic activities such as transportation, manufacturing, and solvent use are significant contributors to VOC emissions, leading to concerns about their impact on air quality and human health. Exposure to VOCs occurs through inhalation, ingestion, and dermal contact, with potential health effects ranging from respiratory irritation to long-term risks such as cancer and neurological disorders. The application of nanomaterials in VOC reduction has encouraging opportunities to improve the effectiveness of environmental pollutant removal. Future research directions should focus on advancing monitoring technologies, assessing the efficacy of mitigation strategies, and understanding the complex interactions between VOCs and environmental factors.

Keywords: Volatile Organic Compounds; Environment; Sources; Exposure; Mitigation
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Abakpa, A., Japhet, T., Omale, P., Chiyam, B., Peter, I., & Abu, G. O. (2024). Volatile Organic Compound in the Environment: Sources, Exposure and Mitigation. African Multidisciplinary Journal of Sciences and Artificial Intelligence, 1(1), 356-384. https://doi.org/10.58578/amjsai.v1i1.3545

References

Abakpa A. M, Yebpella GG, Chinyam BB, Inedu P, Onoja DA, Omale P and Japhet T. (2023). Investigation of Heavy metal contents and its health risk in cow milk samples from Owukpa coal mine area of Benue State. Nigerian Research Journal of Chemical Science, 11(02), 384-399
Abakpa, A.M., Yebpella, G.G., Adelagun, R.O.A., Precious Omale, and Japhet, T. (2023). Health Risk Hazard of heavy metal in drinking water source around Owukpa coal mine field, Benue State, Nigeria. Journal of Biological Pharmaceutical and Chemical Research, 10(4): 1-11.
Abdullahi, M. E., Abu Hassan, M. A., Noor, Z. Z., & Ibrahim, R. K. R. (2014). Application of a packed column air stripper in the removal of volatile organic compounds from wastewater. Reviews in Chemical Engineering, 30, 431–451.
Ahmed, W. M., Lawal, O., Nijsen, T. M., Goodacre, R., & Fowler, S. J. (2017). Exhaled volatile organic compounds of infection: A systematic review. ACS Infectious Diseases, 3, 695–710. https://doi.org/10.1021/acsinfecdis.7b00088
Altalyan, H. N., Jones, B., Bradd, J., Nghiem, L. D., & Alyazichi, Y. M. (2016). Removal of volatile organic compounds (VOCs) from groundwater by reverse osmosis and nanofiltration. Journal of Water Process Engineering, 9, 9-21.
Anand, S. S., & Mehendale, H. M. (2014). In Encyclopedia of Toxicology (3rd ed.).
Archbold, M. (2005). Carbon isotopes of volatile organic compounds for environmental tracing (Doctoral dissertation, Queen’s University of Belfast). Retrieved from https://www.proquest.com/0417-0417
Arkas, M., Allabashi, R., Tsiourvas, D., Mattausch, E.-M., & Perfler, R. (2006). Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environmental Science & Technology, 40, 2771–2777. https://doi.org/10.1021/es052290v
Ateia, M., Arifuzzaman, M., Pellizzeri, S., Attia, M. F., Tharayil, N., Anker, J. N., & Karanfil, T. (2019). Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels. Water Research, 163, 114874. https://doi.org/10.1016/j.watres.2019.114874
Attia, M. F., Swasy, M. I., Ateia, M., Alexis, F., & Whitehead, D. C. (2019). Periodic mesoporous organosilica nanomaterials for rapid capture of VOCs. Chemical Communications, 56, 607–610. https://doi.org/10.1039/c9cc09024j
Azzouz, I., Habba, Y. G., Capochichi-Gnambodoe, M., Marty, F., Vial, J., Leprince-Wang, Y., & Bourouina, T. (2018). Zinc oxide nanoenabled microfluidic reactor for water purification and its applicability to volatile organic compounds. Microsystems & Nanoengineering, 4, 17093. h
Baehr, A. L., Stackelberg, P. E., & Baker, R. J. (1999). eval_uation of the atmosphere as a source of volatile organic compounds in shallow groundwater. Water Resources Research, 35, 127-136.
Bari, M. A., & Kindzierski, W. B. (2018). Ambient volatile organic compounds (VOCs) in Calgary, Alberta: sources and screening health risk assessment. Science of the Total Environment, 631, 627-640.
Bendahou, K., Cherif, L., Siffert, S., Tidahy, H. L., Benaïssa, H., & Aboukaïs, A. (2008). The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene. Applied Catalysis A: General, 351, 82-87. https://doi.org/10.1016/j.apcata.2008.09.001
Bulatović, S., Ilić, M., Šolević Knudsen, T., Milić, J., Pucarević, M., Jovančićević, B., & Vrvić, M. M. (2022). eval_uation of potential human health risks from exposure to volatile organic compounds in contaminated urban groundwater in the Sava river aquifer, Belgrade, Serbia. Environmental Geochemistry and Health, 44(10), 3451-3472.
Change, I. (2006). IPCC guidelines for national greenhouse gas inventories. Inter-Governmental Panel on Climate Change.
Chen, C., Chen, F., Zhang, L., Pan, S., Bian, C., Zheng, X., Meng, X., & Xiao, F.-S. (2015). Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chemical Communications, 51, 5936-5938.
Chen, J., Huang, Y., Li, G., An, T., Hu, Y., & Li, Y. (2016). VOCs elimination and health risk reduction in e-waste dismantling workshop using integrated techniques of electrostatic precipitation with advanced oxidation technologies. Journal of Hazardous Materials, 302, 395-403.
Chong, A. D., & Mayer, K. U. (2017). Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds. Journal of contaminant hydrology, 204, 1-10.
Council, W. G. C. (1988). Report to the Legislature. Wisconsin Groundwater Coordinating Council, 104-193.
Ćurić, M., Zafirovski, O., Spiridonov, V., Ćurić, M., Zafirovski, O., & Spiridonov, V. (2022). Air quality and health. Essentials of medical meteorology, 143-182.
David, E., & Niculescu, V. C. (2021). Volatile organic compounds (VOCs) as environmental pollutants: Occurrence and mitigation using nanomaterials. International journal of environmental research and public health, 18(24), 13147.
DeWalle, F., Kalman, D., Norman, D., & Sung, J. (1985a). Trace volatile organic removals in a community septic tank: EPA/600/2-85-050. US Environmental Protection Agency, Water Engineering Research Laboratory, Cincinnati, OH.
DeWalle, F., Kalman, D., Norman, D., Sung, J., & Plews, G. (1985b). Determination of toxic chemicals in effluent from household septic tanks. US Environmental Protection Agency Technical Report 600.
Diduch, M., Polkowska, Ż., & Namieśnik, J. (2011). Chemical quality of bottled waters: A review. Journal of Food Science, 76, 178-196.
Domingo, J. L., & Nadal, M. (2009). Domestic waste composting facilities: A review of human health risks. Environment International, 35, 382-389.
Eichelberger, J., Budde, W., Munch, J., & Bellar, T. (1989). Method 524.2 measurement of purgeable organic compounds in water by capillary column chromatography/mass spectrometry. Environmental Monitoring Systems Laboratory Office of Research and Development, US EPA, Cincinnati, Ohio: 45268.
Escudero, L. B., Grijalba, A. C., Martinis, E. M., & Wuilloud, R. G. (2013). Bioanalytical separation and preconcentration using ionic liquids. Analytical and Bioanalytical Chemistry, 405, 7597-7613.
Fan, C., Wang, G. S., Chen, Y. C., & Ko, C. H. (2009). Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan. Science of the Total Environment, 407, 2165-2174.
Faroon, O., Taylor, J., Roney, N., Fransen, M. E., Bogaczyk, S., & Diamond, G. (2005). Toxicological profile for carbon tetrachloride. Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA.
Fischer, G., & Dott, W. (2003). Relevance of airborne fungi and their secondary metabolites for environmental, occupational, and indoor hygiene. Archives of Microbiology, 179, 75-82.
Gallon, V., Le Cann, P., Sanchez, M., Dematteo, C., & Le Bot, B. (2020). Emissions of VOCs, SVOCs, and mold during the construction process: Contribution to indoor air quality and future occupants’ exposure. Indoor air, 30(4), 691-710.
Gardini, G., Charlton, J., & Bargon, J. (1982). CIDNP study of the photocleavage of benzyl derivatives. Tetrahedron Letters, 23, 987-990.
Genuino, H. C., Dharmarathna, S., Njagi, E. C., Mei, M. C., & Suib, S. L. (2012). Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts. Journal of Physical Chemistry C, 116, 12066-12078. https://doi.org/10.1021/jp301342f
Guo, H., Lee, S., Chan, L., & Li, W. (2004). Risk assessment of exposure to volatile organic compounds in different indoor environments. Environmental Research, 94, 57-66.
Heeley-Hill, A. C., Grange, S. K., Ward, M. W., Lewis, A. C., Owen, N., Jordan, C., Hodgson, G., & Adamson, G. (2021). Frequency of use of household products containing VOCs and indoor atmospheric concentrations in homes. Environmental Science: Processes & Impacts, 23, 699-713. https://doi.org/10.1039/d0em00504e
Hester, R., Harrison, R., & Derwent, R. G. (1995). Sources, distributions and fates of VOCs in the atmosphere. In R. Hester & R. Harrison (Eds.), Volatile organic compounds in the atmosphere (pp. 1-16). Royal Society of Chemistry.
Ho, C. K., Itamura, M. T., Kelley, M., & Hughes, R. C. (2001). Review of chemical sensors for in-situ monitoring of volatile contaminants. Sandia Report SAND2001-0643, Sandia National Laboratories.
Huang, B., Lei, C., Wei, C., & Zeng, G. (2014). Chlorinated volatile organic compounds (Cl-VOCs) in environment—sources, potential human health impacts, and current remediation technologies. Environment International, 71, 118-138.
Huang, H., & Leung, D. Y. C. (2011). Complete oxidation of formaldehyde at room temperature using TiO2 supported metallic Pd nanoparticles. ACS Catalysis, 1, 348-354.
Japhet. T., Ugye, J.T., Onen A.I and Abakpa AM (2023). Characterization and Antimicrobial studies of synthesized Aluminum Acetylacetonate. Journal of Biological Pharmaceutical and Chemical Research, 10(2), 59-69.
Jin, L.-Y., Ma, R.-H., Lin, J.-J., Meng, L., Wang, Y.-J., & Luo, M.-F. (2011). Bifunctional Pd/Cr2O3–ZrO2 catalyst for the oxidation of volatile organic compounds. Industrial & Engineering Chemistry Research, 50, 10878-10882.
Khan, A., Kanwal, H., Bibi, S., Mushtaq, S., Khan, A., Khan, Y. H., & Mallhi, T. H. (2021). Volatile organic compounds and neurological disorders: From exposure to preventive interventions. In Environmental Contaminants and Neurological Disorders (pp. 201-230). Cham: Springer International Publishing.
Kim, J. M., Lee, C. Y., Jerng, D. W., & Ahn, H. S. (2018). Toluene and acetaldehyde removal from air on graphene-based adsorbents with microsized pores. Journal of Hazardous Materials, 344, 458-465.
Komilis, D. P., Ham, R. K., & Park, J. K. (2004). Emission of volatile organic compounds during composting of municipal solid wastes. Water Research, 38, 1707-1714.
Krishnan, K., & Carrier, R. (2008). Approaches for eval_uating the relevance of multiroute exposures in establishing guideline values for drinking water contaminants. Journal of Environmental Science and Health, Part C, 26, 300-316.
Kumar, V., Lee, Y.-S., Shin, J.-W., Kim, K.-H., Kukkar, D., & Tsang, Y. F. (2020). Potential applications of graphene-based nanomaterials as adsorbent for removal of volatile organic compounds. Environment International, 135, 105356.
LaKind, J. S., Wilkins, A. A., & Berlin, C. M. (2004). Environmental chemicals in human milk: A review of levels, infant exposures and health, and guidance for future research. Toxicology and Applied Pharmacology, 198, 184-208.
Lee, H. J., Seo, H. O., Kim, D. W., Kim, K.-D., Luo, Y., Lim, D. C., Ju, H., Kim, J. W., Lee, J., & Kim, Y. D. (2011). A high-performing nanostructured TiO2 filter for volatile organic compounds using atomic layer deposition. Chemical Communications, 47, 5605-5607.
Li, J., Liu, H., Deng, Y., Liu, G., Chen, Y., & Yang, J. (2016). Emerging nanostructured materials for the catalytic removal of volatile organic compounds. Nanotechnology Reviews, 5(2), 147-181.
Li, J.-J., Cai, S.-C., Yu, E.-Q., Weng, B., Chen, X., Chen, J., Jia, H.-P., & Xu, Y.-J. (2018). Efficient infrared light promoted degradation of volatile organic compounds over photo-thermal responsive Pt-rGO-TiO2 composites. Applied Catalysis B: Environmental, 233, 260-271.
Li, X., Yuan, J., Du, J., Sui, H., & He, L. (2020). Functionalized ordered mesoporous silica by vinyltriethoxysilane for the removal of volatile organic compounds through adsorption/desorption process. Industrial & Engineering Chemistry Research, 59(8), 3511-3520.
Li, X., Zhu, Z., Zhao, Q., & Wang, L. (2011). Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods: A comparative study. Journal of Hazardous Materials, 186(2-3), 2089-2096.
Liu, G., Wang, J., Zhu, Y., & Zhang, X. (2004). Application of multiwalled carbon nanotubes as a solid-phase extraction sorbent for chlorobenzenes. Analytical Letters, 37(14), 3085-3104.
Liu, G.-Q., Wan, M.-X., Huang, Z.-H., & Kang, F.-Y. (2015). Preparation of graphene/metal-organic composites and their adsorption performance for benzene and ethanol. New Carbon Materials, 30(6), 566-571.
Liu, Z., Ye, W., & Little, J. C. (2013). Predicting emissions of volatile and semivolatile organic compounds from building materials: A review. Building and Environment, 64, 7-25.
Lu, C., Su, F., & Hu, S. (2008). Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Applied Surface Science, 254(20), 7035-7041.
Maira, A. J., Coronado, J. M., Augugliaro, V., Yeung, K. L., Conesa, J. C., & Soria, J. (2001). Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. Journal of Catalysis, 202(2), 413-420.
Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L., & Chan, C. K. (2000). Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. Journal of Catalysis, 192(1), 185-196.
Malaguarnera, G., Cataudella, E., Giordano, M., Nunnari, G., Chisari, G., & Malaguarnera, M. (2012). Toxic hepatitis in occupational exposure to solvents. World Journal of Gastroenterology, 18(23), 2756-2766.
Malherbe, L., & Mandin, C. (2007). VOC emissions during outdoor ship painting and health-risk assessment. Atmospheric Environment, 41(28), 6322-6330.
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: a review. Frontiers in public health, 8, 14.
Mieure, J. P. (1980). Determining volatile organics in water. Environmental Science & Technology, 14(8), 930-935.
Miyawaki, J., Lee, G.-H., Yeh, J., Shiratori, N., Shimohara, T., Mochida, I., & Yoon, S.-H. (2012). Development of carbon-supported hybrid catalyst for clean removal of formaldehyde indoors. Catalysis Today, 185(1), 278-283.
Moran, M. J., Hamilton, P. A., & Zogorski, J. S. (2006). Volatile organic compounds in the nation’s ground water and drinking-water supply wells: A summary. U.S. Department of the Interior, U.S. Geological Survey.
Moran, M. J., Zogorski, J. S., & Squillace, P. J. (2007). Chlorinated solvents in groundwater of the United States. Environmental Science & Technology, 41(1), 74-81.
Murrells, T., & Derwent, R. G. (2007). Climate change consequences of VOC emission controls. Report to the Department for Environment, Food and Rural Affairs, Welsh Assembly Government, the Scottish Executive and the Department of the Environment for Northern Ireland (AEAT/ENV/R/2475, Didcot OX11 0QR).
Ousmane, M., Liotta, L. F., Pantaleo, G., Venezia, A. M., Di Carlo, G., Aouine, M., Retailleau, L., & Giroir-Fendler, A. (2011). Supported Au catalysts for propene total oxidation: Study of support morphology and gold particle size effects. Catalysis Today, 176(1), 7-13.
Pandey, P., & Yadav, R. (2018). A review on volatile organic compounds (VOCs) as environmental pollutants: fate and distribution. International Journal of Plant and Environment, 4(02), 14-26.
Pandey, P., & Yadav, R. (2018). A review on volatile organic compounds (VOCs) as environmental pollutants: Fate and distribution. International Journal of Plant and Environmental, 4(2), 14-26.
Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B., & Jia, Z. (2003). Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chemical Physics Letters, 376(1-2), 154-158.
Qiu, X., Fang, Z., Yan, X., Gu, F., & Jiang, F. (2012). Emergency remediation of simulated chromium (VI)-polluted river by nanoscale zero-valent iron: Laboratory study and numerical simulation. Chemical Engineering Journal, 193–194, 358-365.
Reimann, S., & Lewis, A. C. (2007). Anthropogenic VOCs. In Volatile Organic Compounds in the Atmosphere (pp. 1-16). Wiley: Hoboken, NJ, USA.
Ren, X., Chen, C., Nagatsu, M., & Wang, X. (2011). Carbon nanotubes as adsorbents in environmental pollution management: A review. Chemical Engineering Journal, 170(2), 395-410.
Roso, M., Boaretti, C., Pelizzo, M. G., Lauria, A., Modesti, M., & Lorenzetti, A. (2017). Nanostructured photocatalysts based on different oxidized graphenes for VOCs removal. Industrial & Engineering Chemistry Research, 56(36), 9980-9992.
Roth, D., Roberson, J. A., & Cornwell, D. A. (2012). The regulatory context for cVOCs. Journal American Water Works Association, 104(4), 29.
Samaddar, P., Son, Y. S., Tsang, D. C. W., Kim, K. H., & Kumar, S. (2018). Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coordination Chemistry Reviews, 368, 93-114.
Santa Coloma, O., del Hoyo, M., Blanco, A., & Garcia, J. (2000). Control the odours in plants composite. Residuos, 54, 72-76.
Satheesh Anand, S., & Mehendale, H. M. (2005). In Encyclopedia of Toxicology (2nd ed.).
Schellin, M., & Popp, P. (2006). Miniaturized membrane-assisted solvent extraction combined with gas chromatography/electron-capture detection applied to the analysis of volatile organic compounds. Journal of Chromatography A, 1103(2), 211-218.
Schick, L., Sanchis, R., González-Alfaro, V., Agouram, S., López, J. M., Torrente-Murciano, L., García, T., & Solsona, B. (2019). Size-activity relationship of iridium particles supported on silica for the total oxidation of volatile organic compounds (VOCs). Chemical Engineering Journal, 366, 100-111.
Siegel Scott, C., & Jinot, J. (2011). Trichloroethylene and cancer: Systematic and quantitative review of epidemiologic evidence for identifying hazards. International Journal of Environmental Research and Public Health, 8(11), 4238-4271.
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., & Knorr, W. (2014). Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics Discussions, 14, 9317-9341.
Spengler, J. D., & Chen, Q. (2000). Indoor air quality factors in designing a healthy building. Annual Review of Energy and the Environment, 25, 567-600.
Squillace, P. J., Moran, M. J., Lapham, W. W., Price, C. V., Clawges, R. M., & Zogorski, J. S. (1999). Volatile organic compounds in untreated ambient groundwater of the United States, 1985-1995. Environmental Science & Technology, 33(24), 4176-4187.
Squillace, P. J., Scott, J. C., Moran, M. J., Nolan, B., & Kolpin, D. W. (2002). VOCs, pesticides, nitrate, and their mixtures in groundwater used for drinking water in the United States. Environmental Science & Technology, 36(8), 1923-1930.
Su, F., Lu, C., & Hu, S. (2010). Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 353(1-3), 83-91. https://doi.org/10.1016/j.colsurfa.2009.10.025
Suhag, R. (2016). Overview of ground water in India. [No.id: 9504].
Sunguti, A. E., Kibet, J. K., & Kinyanjui, T. K. (2021). A review of the status of organic pollutants in geothermal waters. J. Nat, 4, 19-28.
Tang, W., Wu, X., & Chen, Y. (2014). Catalytic removal of gaseous benzene over Pt/SBA-15 catalyst: The effect of the preparation method. Reaction Kinetics, Mechanisms and Catalysis, 114(2), 711-723.
Thiriat, N., Paulus, H., Le Bot, B., & Glorennec, P. (2009). Exposure to inhaled THM: Comparison of continuous and event-specific exposure assessment for epidemiologic purposes. Environment International, 35(8), 1086-1089.
USEPA. (1994). National Water Quality Inventory: 1992 Report to Congress. EPA-841-R-94-001. Office of Water, Washington, DC.
USEPA. (2000). National Water Quality Inventory: 1998 Report to Congress. EPA-841-R-00-001. Office of Water, Washington, DC.
USEPA. (2002). Edition of the drinking water standards and health advisories. US Environmental Protection Agency, Washington, DC.
Valcke, M., & Krishnan, K. (2014). Characterization of the human kinetic adjustment factor for the health risk assessment of environmental contaminants. Journal of Applied Toxicology, 34(3), 227-240.
Viraraghavan, T., & Hashem, S. (1986). Trace organics in septic tank effluent. Water, Air, & Soil Pollution, 28(3), 299-308.
Wang, S., Ang, H. M., & Tade, M. O. (2007). Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environmental International, 33(5), 694-705.
Weon, S., & Choi, W. (2016). TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds. Environmental Science & Technology, 50(5), 2556-2563.
Weon, S., Choi, J., Park, T., & Choi, W. (2017). Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds. Applied Catalysis B: Environmental, 205, 386-392.
Williams, J., & Koppmann, R. (2007). Volatile organic compounds in the atmosphere: An overview. In Environmental Chemistry (pp. 1-32).
Wu, L., Zhang, L., Meng, T., Yu, F., Chen, J., & Ma, J. (2015). Facile synthesis of 3D amino-functional graphene-sponge composites decorated by graphene nanodots with enhanced removal of indoor formaldehyde. Aerosol and Air Quality Research, 15(3), 1028-1034.
Wylie, P. L. (1988). Comparing headspace with purge and trap for analysis of volatile priority pollutants. Journal American Water Works Association, 80(5), 65-72.
Xu, Z., Yu, J., & Jaroniec, M. (2015). Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt. Applied Catalysis B: Environmental, 163, 306-312.
Yan, J., Yu, Y., Xiao, J., Li, Y., & Li, Z. (2016). Improved ethanol adsorption capacity and coefficient of performance for adsorption chillers of Cu-BTC@GO composite prepared by rapid room temperature synthesis. Industrial & Engineering Chemistry Research, 55(46), 11767-11774.
Yang, J. (2020). Ozone and ozone depletion. In Atmosphere and Climate (pp. 121-128). CRC Press.
Zhang, J., Li, Y., Zhang, Y., Chen, M., Wang, L., Zhang, C., & He, H. (2015). Effect of support on the activity of Ag-based catalysts for formaldehyde oxidation. Scientific Reports, 5, 12950.
Zhang, Y., Tang, Z.-R., Fu, X., & Xu, Y.-J. (2010). TiO2−graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2−graphene truly different from other TiO2−carbon composite materials? ACS Nano, 4(12), 7303-7314.
Zhao, G., Li, J., Ren, X., Chen, C., & Wang, X. (2011). Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental Science & Technology, 45(22), 10454-10462.
Zhu, F., Xu, J., Ke, Y., Huang, S., Zeng, F., Luan, T., & Ouyang, G. (2013). Applications of in vivo and in vitro solid-phase microextraction techniques in plant analysis: A review. Analytica Chimica Acta, 794, 1-14.