An Efficient Non-Linear Estimator for Estimating the Finite Population Distribution Function under Simple Random Sampling Design

Page Numbers: 681-696
Published: 2024-09-03
Digital Object Identifier: 10.58578/amjsai.v1i2.3799
Save this to:
Article Metrics:
Viewed : 20 times
Downloaded : 28 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Adam Rabiu National Open University of Nigeria, Nigeria
  • Ahmed Audu Usmanu Danfodiyo University, Sokoto, Nigeria
  • Ibrahim Abubakar Kaduna State University, Kaduna, Nigeria

Abstract

The main purpose of this paper is to propose an efficient non-linear estimator for estimating the population distribution function under Simple Random Sampling (SRS). The properties (Bias and Mean Square Error (MSE)) of the suggested estimator are obtained up to the first-order approximation using Taylor’s series expansion approach. The performance of the proposed estimator over some existing estimators is theoretically compared and efficiency conditions under which the proposed estimator outperforms existing estimators were obtained. The theoretical findings are supported numerically by empirical studies using five different population data sets and the result shows that the proposed estimator performed better than the existing estimators considered in the literature.

Keywords: Auxiliary variable; Exponential estimator; Cumulative Distribution Function
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Rabiu, A., Audu, A., & Abubakar, I. (2024). An Efficient Non-Linear Estimator for Estimating the Finite Population Distribution Function under Simple Random Sampling Design. African Multidisciplinary Journal of Sciences and Artificial Intelligence, 1(2), 681-696. https://doi.org/10.58578/amjsai.v1i2.3799

References

Abbas, M., &Haq, A. (2022). Estimation of finite population distribution function with auxiliary information in a complex survey sampling. SORT-Statistics and Operations Research Transactions, 67-94.
Ahmad, S., Hussain, S., & Ahmad, S. (2021). Finite population distribution function estimation using auxiliary information under simple random sampling.Statistics, Computing and Interdisciplinary Research, 3(1), 29-38.
Ahmad, S., Aamir, M., Hussain, S., Shabbir, J., Zahid, E., Subkrajang, K., &Jirawattanapanit, A. (2022). A new generalized class of exponential factor-type estimators for population distribution function using two auxiliary variables. Mathematical Problems in Engineering, 2022.
Ahmad, S., Ullah, K., Zahid, E., Shabbir, J., Aamir, M., Alshanbari, H. M., & El-Bagoury, A. A. A. H. (2023). A new improved generalized class of estimators for population distribution function using auxiliary variable under simple random sampling. Scientific Reports, 13(1), 5415.
Berger, Y. G., & Munoz, J. F. (2015).On estimating quantiles using auxiliary information.Journal of Official Statistics, 31(1), 101-119.
Chambers, R. L., & Dunstan, R. (1986). Estimating distribution functions from survey data. Biometrika, 73(3), 597-604.
Cochran, W. G. (1940). The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce. The journal of agricultural science, 30(2), 262-275.
Gupta, R. K. and Yadav, S. K. (2018). Improved Estimation of Population Mean Using Information on Size of the Sample. American Journal of Mathematics and Statistics.8(2): 27-35.
Jerajuddin, M. and Kishun, J. (2016). Modified Ratio Estimators for Population Mean Using Size of the Sample, Selected From Population, IJSRSET. (2)2:10-16.
Hussain, S., Akhtar, S., & El-Morshedy, M. (2022). Modified estimators of finite population distribution function based on dual use of auxiliary information under stratified random sampling. Science Progress, 105(3), 00368504221128486.
Hussain, S., Ahmad, S., Akhtar, S., Javed, A., & Yasmeen, U. (2020). Estimation of finite population distribution function with dual use of auxiliary information under non-response. Plos one, 15(12), e0243584.
Martínez, S., Rueda, M., Arcos, A., &Martínez, H. (2010). Optimum calibration points estimating distribution functions. Journal of computational and applied mathematics, 233(9), 2265-2277.
Prasad, N. N., & Rao, J. N. (1990). The estimation of the mean squared error of small-area estimators.Journal of the American statistical association, 85(409), 163-171.
Singh, G. N., & Usman, M. (2021). Enhanced estimation of population distribution function in the presence of non-response.Ain Shams Engineering Journal, 12(3), 3109-3119.
Singh, H.P., Tailor, R. and Kakran, M. S. (2004). An Improved Estimation of Population Mean using Power Transformation. Journal of the Indian Society of Agricultural Statistics, 8(2): 223–230.
Singh, H.P. and Tailor, R. (2003). Use of known Correlation Coefficient in Estimating the Finite Population Means; Statistics in Transition 6 (4), 555-560.
Sisodia, B.V.S. and Dwivedi, V.K. (1981): A Modified Ratio Estimator using Coefficient of Variation of Auxiliary Variable; Jour. of Indian. Soc. of Agri. Stat., 33(1).Pp. 13–18
Upadhyaya, L.N. and Singh, H.P. (1999): Use of Transformed Auxiliary Variable in Estimating the Finite Population Means, Biometrical Journal.41 (5), 627–636.
Yaqub, M., & Shabbir, J. (2020). Estimation of population distribution function involving measurement error in the presence of non-response.Communications in Statistics-Theory and Methods, 49 (10), 2540-2559.
Zakari, Y., Muili, J. O., Tela, M. N., Danchadi, N. S., &Audu, A. (2020).Use of unknown weight to enhance ratio-type estimator in simple random sampling.Lapai Journal of Applied and Natural Sciences, 5(1),74-81.