Analisis Variasi Jumlah Sudu Terhadap Torsi Yang Dihasilkan Pada Turbin Vortex

Analysis of Blade Number Variations on Torque Generation in a Vortex Turbine

Page Numbers: 348-366
Published
2023-11-07
Digital Object Identifier: 10.58578/ajstea.v1i2.2070
Save this to:
Article Metrics:
Viewed : 140 times
Downloaded : 103 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)

Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Trio Harinaldi Aswanto Universitas Negeri Padang
  • Purwantono Purwantono Universitas Negeri Padang
  • Randi Purnama Putra Universitas Negeri Padang
  • Wanda Afnison Universitas Negeri Padang

Abstract

Water turbines, particularly vortex turbines, represent a promising alternative energy source with significant potential for development. Vortex turbines are a relatively novel type of water turbine, offering ample opportunities for further research. This study aims to assess the efficiency of different blade variations, specifically 3, 4, and 5 blades. Computational Fluid Dynamics (CFD) analysis was conducted using Solidworks 2022 software. The simulation results indicate that the torque values for 3 blades, 4 blades, and 5 blades were 0.26 Nm, 3.02 Nm, and 4.96 Nm, respectively. Efficiency calculations were performed using a formula, yielding efficiencies of 0.9% for 3 blades, 11.91% for 4 blades, and 20.74% for 5 blades. These results suggest that higher blade counts lead to greater efficiency.

Keywords: Hydroelectric Power Plant; Vortex Turbine; Torque; Discharge; Efficiency; Solidworks Simulation; CFD

Citation Metrics:






Downloads

Download data is not yet available.
How to Cite
Aswanto, T. H., Purwantono, P., Putra, R. P., & Afnison, W. (2023). Analisis Variasi Jumlah Sudu Terhadap Torsi Yang Dihasilkan Pada Turbin Vortex. Asian Journal of Science, Technology, Engineering, and Art, 1(2), 348-366. https://doi.org/10.58578/ajstea.v1i2.2070

References

Agustha, K. R., Jasa, L., & Suartika, I. M. (2022). Pengaruh Variasi Jumlah Sudu Terhadap Efisiensi pada Prototype Pembangkit Listrik Tenaga Mikrohidro (PLTMH) dengan Menggunakan Turbin Vortex. Jurnal SPEKTRUM, 9(3), 26–28.
Ashwin, P., & King, G. P. (1995). Streamline topology in eccentric Taylor vortex flow. Journal of Fluid Mechanics, 285, 215–247. https://doi.org/10.1017/S0022112095000528
Chen, J., Yang, J., Li, Z., Fan, X., Zi, Y., Jing, Q., Guo, H., Wen, Z., Pradel, K. C., Niu, S., & Wang, Z. L. (2015). Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy. ACS Nano, 9(3), 3324–3331. https://doi.org/10.1021/acsnano.5b00534
Chitrakar, S., Dahlhaug, O. G., & Neopane, H. P. (2018). Numerical investigation of the effect of leakage flow through erosion-induced clearance gaps of guide vanes on the performance of Francis turbines. Engineering Applications of Computational Fluid Mechanics, 12(1), 662–678. https://doi.org/10.1080/19942060.2018.1509806
Cucitore, R., Quadrio, M., & Baron, A. (1999). On the effectiveness and limitations of local criteria for the identification of a vortex. European Journal of Mechanics - B/Fluids, 18(2), 261–282. https://doi.org/10.1016/S0997-7546(99)80026-0
Eckhardt, B., Schneider, T. M., Hof, B., & Westerweel, J. (2007). Turbulence Transition in Pipe Flow. Annual Review of Fluid Mechanics, 39(1), 447–468. https://doi.org/10.1146/annurev.fluid.39.050905.110308
Escudier, M. (1988). Vortex breakdown: Observations and explanations. Progress in Aerospace Sciences, 25(2), 189–229. https://doi.org/10.1016/0376-0421(88)90007-3
Griffiths, R. W., & Linden, P. F. (1981). The stability of vortices in a rotating, stratified fluid. Journal of Fluid Mechanics, 105(1), 283. https://doi.org/10.1017/S0022112081003212
Hemmat Esfe, M., Bahiraei, M., Torabi, A., & Valadkhani, M. (2021). A critical review on pulsating flow in conventional fluids and nanofluids: Thermo-hydraulic characteristics. International Communications in Heat and Mass Transfer, 120, 104859. https://doi.org/10.1016/j.icheatmasstransfer.2020.104859
Hussain, A., Arif, S. M., & Aslam, M. (2017). Emerging renewable and sustainable energy technologies: State of the art. Renewable and Sustainable Energy Reviews, 71, 12–28. https://doi.org/10.1016/j.rser.2016.12.033
Majdalani, J., & Chiaverini, M. J. (2009). On steady rotational cyclonic flows: The viscous bidirectional vortex. Physics of Fluids, 21(10). https://doi.org/10.1063/1.3247186
Muhammad Qamaran Abdul Aziz, Juferi Idris, & Muhammad Firdaus Abdullah. (2021). Simulation Of the Conical Gravitational Water Vortex Turbine (GWVT) Design in Producing Optimum Force for Energy Production. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 89(2), 99–113. https://doi.org/10.37934/arfmts.89.2.99113
Nasruddin, Idrus Alhamid, M., Daud, Y., Surachman, A., Sugiyono, A., Aditya, H. B., & Mahlia, T. M. I. (2016). Potential of geothermal energy for electricity generation in Indonesia: A review. Renewable and Sustainable Energy Reviews, 53, 733–740. https://doi.org/10.1016/j.rser.2015.09.032
Oh, T. H., Pang, S. Y., & Chua, S. C. (2010). Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth. Renewable and Sustainable Energy Reviews, 14(4), 1241–1252. https://doi.org/10.1016/j.rser.2009.12.003
Pali, B. S., & Vadhera, S. (2021). A novel approach for hydropower generation using photovoltaic electricity as driving energy. Applied Energy, 302, 117513. https://doi.org/10.1016/j.apenergy.2021.117513
Prasetyo W.D. (2018). Rancang Bangun Turbin Vortex Skala Kecil dan Pengujian Pengaruh Bentuk Penampang Sudu Terhadap Daya. 13–19.
Wang, X., Zhao, B., Ye, Q., & Su, Y. (2020). Wet flue gas desulfurization using micro vortex flow scrubber: Characteristics, modeling and simulation. Separation and Purification Technology, 247, 116915. https://doi.org/10.1016/j.seppur.2020.116915
Wüstenhagen, R., Wolsink, M., & Bürer, M. J. (2007). Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy, 35(5), 2683–2691. https://doi.org/10.1016/j.enpol.2006.12.001
Zhao, Z., Jiang, R., Feng, J., Liu, H., Wang, T., Shen, W., Chen, M., Wang, D., & Liu, Y. (2022). Researches on vortex generators applied to wind turbines: A review. Ocean Engineering, 253, 111266. https://doi.org/10.1016/j.oceaneng.2022.111266

Most read articles by the same author(s)