Identifikasi Mikroplastik Polyethylene (PE) Menggunakan Digesting Wet Peroxide Oxidation (WPO)

Identification of Microplastics Polyethylene (PE) Using Digesting Wet Peroxide Oxidation (WPO)

Page Numbers: 266-280
Published
2023-11-02
Digital Object Identifier: 10.58578/ajstea.v1i2.2037
Save this to:
Article Metrics:
Viewed : 201 times
Downloaded : 145 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)

Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Adisty Fitriandoni Universitas Negeri Padang
  • Indang Dewata Universitas Negeri Padang

Abstract

The extraction method using Wet Peroxide Oxidation (WPO) is a digestion  method for separating microplastic particles and other organic/inorganic precipitation, with a liquid oxidation process using peroxide and iron salts as catalysts. Polyethylene (PE) is a type of plastic that pollutes the environment due to its high level of use in the packaging sector. The aim of this research is to determine the optimum conditions for the Wet Peroxide Oxidation (WPO) extraction method and obtain an effective method for identifying microplastics. Variations in oven temperature are 70⁰C, 80⁰C, 90⁰C, 100⁰C, and 110⁰C; variations in Fe(II) concentrsation 0.025 M, 0.05 M, 0.075 M, 0.1 M, and 0.125 M; heating temperature variations 30⁰C, 45⁰C, 60⁰C, 75⁰C, and 90⁰C. The research results showed that the optimum oven conditions occurred at a temperature of 90⁰C producing a microplastic mass of 0.5943 grams, the optimum Fe(II) concentration of 0.1M produced a mass of 1.2966 grams, the optimum heating temperature occurred at 60⁰C producing a mass of 0.7128 grams. For samples, characterization using FTIR showed that no new groups were formed after being treated under optimal conditions. Meanwhile, for XRF, no impurity elements were identified after the sample was treated with optimum conditions.

Keywords: Microplastics; Polyethylene (PE); Extraction; Wet Peroxide Oxidation (WPO)

Citation Metrics:






Downloads

Download data is not yet available.
How to Cite
Fitriandoni, A., & Dewata, I. (2023). Identifikasi Mikroplastik Polyethylene (PE) Menggunakan Digesting Wet Peroxide Oxidation (WPO). Asian Journal of Science, Technology, Engineering, and Art, 1(2), 266-280. https://doi.org/10.58578/ajstea.v1i2.2037

References

Ahmed, N., Zeeshan, M., Iqbal, N., Farooq, M. Z., & Shah, S. A. (2018). Investigation on bio-oil yield and quality with scrap tire addition in sugarcane bagasse pyrolysis. Journal of Cleaner Production, 196, 927–934. https://doi.org/10.1016/j.jclepro.2018.06.142
Anderson, P. J., Warrack, S., Langen, V., Challis, J. K., Hanson, M. L., & Rennie, M. D. (2017). Microplastic contamination in Lake Winnipeg, Canada. Environmental Pollution, 225, 223–231. https://doi.org/10.1016/j.envpol.2017.02.072
Deswati, Indra, J. Z., Joko, S., Norita Tetra, O., & Pardi, H. (2021). Metoda Analisis Mikroplastik Dalam Sampel Lingkungan. In H. Pardi (Ed.), Perkumpulan Rumah Cemerlang Indonesia (PRCI) (1st ed., pp. 54–59).
Dewata, I. (1995). Limbah padat industry pulp dan kertas sebgai bahan untuk pengolahan limbah cair industry lapis listrik. Kajian Ilmu Lingkungan UI.
Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, H., & Amato, S. (2013). Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin, 77(1–2), 177–182. https://doi.org/10.1016/j.marpolbul.2013.10.007
Estahbanati, S., & Fahrenfeld, N. L. (2016). Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere, 162, 277–284. https://doi.org/10.1016/j.chemosphere.2016.07.083
Feil, A., & Pretz, T. (2020). Mechanical recycling of packaging waste. In Plastic Waste and Recycling. Elsevier Inc. https://doi.org/10.1016/b978-0-12-817880-5.00011-6
Free, C. M., Jensen, O. P., Mason, S. A., Eriksen, M., Williamson, N. J., & Boldgiv, B. (2014). High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin, 85(1), 156–163. https://doi.org/10.1016/j.marpolbul.2014.06.001
Guo, X., Yin, Y., Yang, C., Dang, Z. (2018). maize Straw Decorated With Sulfide for Tylosin REmoval From The Water. In Ecotoxicol (p. Saf.152, 16-23).
Ivar do Sul JA, C. M. (2014). The Present and Future of Microplastic Pollution In The Marine Enviroment. Environmental Pollution, 185, 352–364.
Karuniastuti, N. (2013). Bahaya plastik terhadap kesehatan dan lingkungan. Forum Teknologi.
Lastovina, T. A., & Budnyk, A. P. (2021). A review of methods for extraction, removal, and stimulated degradation of microplastics. Journal of Water Process Engineering, 43(May), 102209. https://doi.org/10.1016/j.jwpe.2021.102209
Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., Li, D., & Shi, H. (2016). Microplastics in mussels along the coastal waters of China. Environmental Pollution, 214, 177–184. https://doi.org/10.1016/j.envpol.2016.04.012
Marine Debris Program, N. (2015). Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for quantifying synthetic particles in waters and sediments. July.
Mintenig, S. M., Int-Veen, I., Löder, M. G. J., Primpke, S., & Gerdts, G. (2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research, 108, 365–372. https://doi.org/10.1016/j.watres.2016.11.015
Mintenig, S. M., Löder, M. G. J., Primpke, S., & Gerdts, G. (2016). AC SC. Water Research. https://doi.org/10.1016/j.watres.2016.11.015
Nasution, R. . (2015). Berbagai Cara Penanggulangan Limbah Plastik. Journal of Islamic Science and Technology.
Ningrum, I. P., Sa’adah, N., & Mahmiah, M. (2022). Jenis dan Kelimpahan Mikroplastik Pada Sedimen di Gili Ketapang, Probolinggo. Journal of Marine Research, 11(4), 785–793. https://doi.org/10.14710/jmr.v11i4.35467
Rochman, M. C., Browne, A. J., Underwood, J. A. VanFraneker, R. C., Thompson, L., dan Zetteler, A. (2015). The Ecology Impacts of Marine Debris: Unraveling The Demonstrated Evidance From What is Perceived. Ecology, 302–312.
Romani, V. P., Martins, V. G., & Goddard, J. M. (2020). Radical scavenging polyethylene films as antioxidant active packaging materials. Food Control, 109(October 2019), 106946. https://doi.org/10.1016/j.foodcont.2019.106946
Satiyarti, R. B., Wulan Pawhestri, S., & Adila, I. S. (2022). Identifikasi Mikroplastik pada Sedimen Pantai Sukaraja, Lampung. Jurnal Kelautan Tropis, 25(3), 329–336. https://doi.org/10.14710/jkt.v25i3.12786
Song, Young K., et al. (2015). Comparism of Microscopic and Spectroscopic Identification Methods for Analysis of Microplastic In Enviromental Samples. Marine Pollution Bulletin.
Sruthy, S., & Ramasamy, E. V. (2017). Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India. Environmental Pollution, 222, 315–322. https://doi.org/10.1016/j.envpol.2016.12.038
Tamas, I. N. (2017). Proses Fenton Pada Pengolahan Lindi.
Tiseo, I. (2021). Market volume ofpolyethylene worldwide from 2015 to 2020, with a forecast for 2021 to 2026.
Van Cauwenberghe, L., & Janssen, C. R. (2014). Microplastics in bivalves cultured for human consumption. Environmental Pollution, 193, 65–70. https://doi.org/10.1016/j.envpol.2014.06.010
Winterbourn, C. C. (1995). Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology Letters, 82–83(C), 969–974. https://doi.org/10.1016/0378-4274(95)03532-X
Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental Pollution (Barking, Essex : 1987), 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031