Effect of Medicinal Plants on Liver and Malaria Pathogenesis

Page Numbers: 612-636
Published: 2024-07-31
Digital Object Identifier: 10.58578/ajbmbr.v1i1.3674
Save this to:
Article Metrics:
Viewed : 16 times
Downloaded : 11 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Emmanuel Askeb-nde Joel Federal University Wukari, Taraba State, Nigeria
  • Isaac John Umaru Federal University Wukari, Taraba State, Nigeria
  • Kingsley Iyoko Iseko Limi Hospital Limited Abuja, Nigeria
  • Dafup Katdel Istifanus David Umahi Federal University Teaching Hospital, Ebonyi State, Nigeria

Abstract

This seminar reviewed the literatures on the effects of medicinal plants on liver and malaria pathogenesis. Malaria parasite has a complex life cycle that takes place both inside the mosquito and human beings. Generally, diagnosis of malaria is classified into clinical and parasitological diagnoses. Lack of clear understanding on the overall biology of Plasmodium (malaria), its life cycle and its mechanism of action has created a challenge in an effort to develop new drugs, and preventive methods against malaria such as using malaria vaccines and vector control. They have been a rise in the use of herbal supplements, natural products, and traditional medicines over the years. The use of herbal plants or their preparations in the management of various diseases including liver diseases has been practiced for several decades and its extension in current dispensation is recognized. It has been shown that the effect of medicinal plants is somehow related to belief, tradition and culture of the community. However, there are growing concerns related to the safety and toxicities of these medicines. These herbal medicines are associated with complications such as liver damage with a high incidence of mortalities and morbidities. Clinical manifestations range from asymptomatic cases with abnormal liver functions tests to sudden and severe liver failure necessitating liver transplantation. The liver is a very important organ with a lot of functions such as metabolism, detoxification, and storage of nutrients for the host to survive. Standard liver marker enzymes such as ALT, AST, ALP, albumin, globulin are essential when carrying out liver function tests. Medicinal plant components are essential for and can be beneficial or detrimental to the healthy or diseased liver. Medicinal Plants are an essential part of the human diet and comprise various compounds (photochemical) such as alkaloid (pyrrolizidine), kavalactone which are related to liver health. Selected medicinal plants can provide nutritional and medicinal support for liver diseases. At the present, the knowledge of the effects of medicinal plants on the liver is still incomplete. The most urgent task at the present time is to find the best dietary and medicinal plants for liver health in an endless list of candidates globally. This review updates the knowledge about the effects of medicinal plants consumption on the health of the liver, putting particular emphasis on the potential beneficial and harmful impact of medicinal plants on liver function.

Keywords: Medicinal; Plants; Liver; Malaria; Pathogenesis
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Joel, E. A.- nde, Umaru, I. J., Iseko, K. I., & Istifanus, D. K. (2024). Effect of Medicinal Plants on Liver and Malaria Pathogenesis. African Journal of Biochemistry and Molecular Biology Research, 1(1), 612-636. https://doi.org/10.58578/ajbmbr.v1i1.3674

References

Abd El-Wahab, A. E., Ghareeb, D. A., Sarhan, E. E., Abu-Serie, M. M., El Demellawy, M. A. (2013). In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects. BMC complementary and alternative medicine, 13, 1-12.
Achan, J., Talisuna, A. O., Erhart, A., Yeka, A., Tibenderana, J. K., Baliraine, F. N., Rosenthal, P. J., & D'Alessandro, U. (2011). Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malaria Journal, 10(1), 144. https://doi.org/10.1186/1475-2875-10-144
Addolorato, G., Mirijello, A., Leggio, L., Ferrulli, A., & Landolfi, R. (2013). Management of alcohol dependence in patients with liver disease. CNS drugs, 27, 287-299.
Adekunle, A. A., & Aderogba, M. A. (2009). Antimalarial and cytotoxic activities of the constituents of Cryptolepis sanguinolenta. Pakistan Journal of Biological Sciences, 12(12), 849-854. https://doi.org/10.3923/pjbs.2009.849.854
Anand, A. C., Puri, P., & Ease, L. (2014). Malarial hepatopathy: A cohort study from a tertiary care center in India. Tropical Doctor, 44(1), 14-19. https://doi.org/10.1177/0049475513506488
Arase, Y., Ikeda, K., Murashima, N., Chayama, K., Tsubota, A., Koida, I., ... & Kumada, H. (1997). The long term efficacy of glycyrrhizin in chronic hepatitis C patients. Cancer, 79(8), 1494-1500.
Arung, E. T., Kusuma, I. W., Purwatiningsih, S., Roh, S. S., Yang, C. H., Jeon, S., Kondo, R. (2009). Antioxidant activity and cytotoxicity of the traditional Indonesian medicine Tahongai (Kleinhovia hospita L.) extract. Journal of acupuncture and meridian studies, 2(4), 306-308
Barchini, E., & Solinas, G. (2019). Mitochondrial dysfunction in liver disease. International Journal of Molecular Sciences, 20(15), 3688.
Biswas, K., Chattopadhyay, I., Banerjee, R. K., & Bandyopadhyay, U. (2002). Biological activities and medicinal properties of neem (Azadirachta indica). Current Science, 82(11), 1336-1345.
Cao, J., Liu, Y., Jia, L., Zhou, H. M., Kong, Y., Yang, G., Zhong, L. F. (2007). Curcumin induces apoptosis through mitochondrial hyperpolarization and mtDNA damage in human hepatoma G2 cells. Free Radical Biology and Medicine, 43(6), 968-975.
Carrolo, M., Giordano, S., Cabrita-Santos, L., Corso, S., Vigario, A. M., Silva, S., Leirião, P., Carapau, D., Armas-Portela, R., Comoglio, P. M., Rodriguez, A., & Mota, M. M. (2003). Hepatocyte growth factor and its receptor are required for malaria infection. Nature Medicine, 9(11), 1363-1369. https://doi.org/10.1038/nm943
Choi, D. S., Kim, S. J., & Jung, M. Y. (2001). Inhibitory activity of berberine on DNA strand cleavage induced by hydrogen peroxide and cytochrome c. Bioscience, biotechnology, and biochemistry, 65(2), 452-455
Efferth, T. (2017). Medicinal plants, phytochemicals, and anticancer therapy: a review. Cancer Treatment Reviews, 50, 182-205. https://doi.org/10.1016/j.ctrv.2017.01.008
Fürst, R., & Zündorf, I. (2014). Plant-derived anti-inflammatory compounds: Hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators of Inflammation, 2014, 146832.
Gupta, S., Thapar, M. M., Wernsdorfer, W. H., & Björkman, A. (2002). In vitro interactions of artemisinin with other antimalarial drugs in Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96(5), 517-523. https://doi.org/10.1016/S0035-9203(02)90429-X
Handa, S. S., & Sharma, A. (1990). Hepatoprotective activity of andrographolide from Andrographis paniculata against carbontetrachloride. The Indian journal of medical research, 92, 276-283.
Isaac, J. U., Saad, I. S., Rufaidat, B. A., Bilyaminu H., Kerenhappuch I. U., David, E. H., and Bando, C. D (2020). Effect of herbal medicine and its biochemical implication. International Journal of Advanced Biochemistry Research, 4(2): 46-57
Jayaprakash, R., Ramesh, V., Sridhar, M. P., Sasikala, C. (2015). Antioxidant activity of ethanolic extract of Tinospora cordifolia on N-nitrosodiethylamine (diethylnitrosamine) induced liver cancer in male Wister albino rats. Journal of Pharmacy & Bioallied Sciences, 7(Suppl 1), S40.
Kaur, G., Sharma, V., & Singh, S. (2012). Antimalarial activity of some Indian medicinal plants against Plasmodium falciparum: an in vitro study. Asian Pacific Journal of Tropical
Kaur, K., Jain, M., Kaur, T., & Jain, R. (2009). Antimalarials from nature. Bioorganic & Medicinal Chemistry, 17(9), 3229-3256. https://doi.org/10.1016/j.bmc.2009.02.050
Kaur, V., Kumar, M., Kumar, A., Kaur, K., Dhillon, V. S., Kaur, S. (2018). Pharmacotherapeutic potential of phytochemicals: Implications in cancer chemoprevention and future perspectives. Biomedicine & Pharmacotherapy, 97, 564-586.
Khan, M., Giessrigl, B., Vonach, C., Madlener, S., Prinz, S., Herbaceck, I., Krupitza, G. (2010). Berberine and a Berberis lycium extract inactivate Cdc25A and induce α-tubulin acetylation that correlate with HL-60 cell cycle inhibition and apoptosis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 683(1-2), 123-130.
Kochar, D. K., Agarwal, P., Kochar, S. K., Jain, R., Rawat, N., Pokharna, R. K., Kachhawa, S., & Srivastava, T. (2003). Hepatocyte dysfunction and hepatic encephalopathy in Plasmodium falciparum malaria. QJM: An International Journal of Medicine, 96(7), 505-512. https://doi.org/10.1093/qjmed/hcg088
Kumar, D. J., Santhi, R. J. (2012). Antioxidant and cytotoxic effects of hexane extract of Morinda pubescens leaves in human liver cancer cell line. Asian Pacific Journal of Tropical Medicine, 5(5), 362-366.
Lucena, M. I., Andrade, R. J., de la Cruz, J. P., Rodríguez-Mendizábal, M., Blanco, E., & Sánchez de la Cuesta, F. (2002). Effects of silymarin MZ-80 on oxidative stress in patients with alcoholic cirrhosis. International journal of clinical pharmacology and therapeutics, 40(1), 2-8.
Mehta, S. R., Plattner, E. J., Chandrasekhar, R., & Wernsdorfer, W. H. (2013). Malaria and liver disease. Annals of Hepatology, 12(2), 199-207. PMID: 23396737
Meis, J. F., Verhave, J. P., Jap, P. H., & Meuwissen, J. H. (1983). Transformation of sporozoites of Plasmodium berghei into exoerythrocytic forms in the liver of its mammalian host. Cell and Tissue Research, 233(3), 565-573. https://doi.org/10.1007/BF00238289
Meshnick, S. R. (2002). Artemisinin: mechanisms of action, resistance and toxicity. International Journal for Parasitology, 32(13), 1655-1660. https://doi.org/10.1016/s0020-7519(02)00194-7
Mittal, A., Nagpal, M., & Vashistha, V. K. (2023). Recent Advances in the Pharmacological Activities of Glycyrrhizin, Glycyrrhetinic Acid, and Their Analogs. Revista Brasileira de Farmacognosia, 33(6), 1154-1169.
Navarro, V. J., & Seeff, L. B. (2013). Liver injury induced by herbal complementary and alternative medicine. Clinics in Liver Disease, 17(4), 715-735.
Onyeibor, O., Croft, S. L., Dodson, H. I., Feiz-Haddad, M., Kendrick, H., Millington, N. J., Parapini, S., Phillips, R. M., & Seville, S. (2005). Synthesis of some cryptolepine analogues, assessment of their antimalarial and cytotoxic activities, and consideration of their antimalarial mode of action. Journal of Medicinal Chemistry, 48(7), 2472-2476. https://doi.org/10.1021/jm049375o
Ploeger, B., Mensinga, T., Sips, A., Meulenbelt, J., & Dortant, P. (2001). The pharmacokinetics of glycyrrhizic acid eval_uated by physiologically based pharmacokinetic modeling. Drug Metabolism Reviews, 33(2), 125-147.
Prasad, K. N., Xie, H., Hao, J., Yang, B., Qiu, S., Wei, X., Jiang, Y. (2010). Antioxidant and anticancer activities of 8-hydroxypsoralen isolated from wampee [Clausena lansium (Lour.) Skeels] peel. Food chemistry, 118(1), 62-66.
Prudêncio, M., Rodriguez, A., & Mota, M. M. (2006). The silent path to thousands of merozoites: the Plasmodium liver stage. Nature Reviews Microbiology, 4(11), 849-856. https://doi.org/10.1038/nrmicro1529
Ramirez-Tortosa, M. C., Aguilera, C. M., Quiles, J. L., Battino, M., Barja, G., & Gil, A. (1999). Influence of dietary lipids on liver injury induced by a choline-deficient diet in rats. European journal of nutrition, 38(6), 262-270.
Ruan, J., et al. (2014). Mechanisms of hepatotoxicity induced by pyrrolizidine alkaloids in humans and animals. Chemico-Biological Interactions, 223, 59-68.
Sachs, J., & Malaney, P. (2002). The economic and social burden of malaria. Nature, 415(6872), 680-685. https://doi.org/10.1038/415680a
Saller, R., Meier, R., & Brignoli, R. (2001). The use of silymarin in the treatment of liver diseases. Drugs, 61(14), 2035-2063.
Shapiro, H., Ashkenazi, M., Weizman, N., Shahmurov, M., Aeed, H., & Bruck, R. (2006). Curcumin ameliorates acute thioacetamide-induced hepatotoxicity. Journal of gastroenterology and hepatology, 21(2), 358-366.
Stickel, F., & Shouval, D. (2015). Hepatotoxicity of herbal and dietary supplements: An update. Archives of Toxicology, 89(6), 851-865.
Sturm, A., Amino, R., van de Sand, C., Regen, T., Retzlaff, S., Rennenberg, A., Krueger, A., Pollok, J. M., Menard, R., & Heussler, V. T. (2006). Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science, 313(5791), 1287-1290. https://doi.org/10.1126/science.1129720
Teschke, R., & Eickhoff, A. (2015). Herbal hepatotoxicity in traditional and modern medicine: Actual key issues and new encouraging steps. Frontiers in Pharmacology, 6, 72.
Teschke, R., & Schwarzenboeck, A. (2009). Suspected hepatotoxicity by Crotalaria plants: Ptaquiloside, an adjoined Health risk. Annals of Hepatology, 8(3), 214-220.
Trivedi, N. P., & Rawal, U. M. (2001). Hepatoprotective and antioxidant property of Andrographis paniculata (Nees) in BHC induced liver damage in mice. Indian journal of experimental biology, 39(1), 41-46.
Tu, Y. (2011). The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature Medicine, 17(10), 1217-1220. https://doi.org/10.1038/nm.2471
Udeinya, I. J., Shu, E. N., Quakyi, I., & Ajayi, F. O. (1993). An antimalarial neem leaf extract has both schizonticidal and gametocytocidal activities. The American Journal of Tropical Medicine and Hygiene, 46(6), 528-534. https://doi.org/10.4269/ajtmh.1993.46.528
Verma, N., & Vinayak, M. (2009). Effect of Terminalia arjuna on antioxidant defense system in cancer. Molecular biology reports, 36, 159-164.
Willcox, M. L. (2011). Improved traditional phytomedicines in current use for the clinical treatment of malaria. Planta Medica, 77(6), 662-671. https://doi.org/10.1055/s-0030-1250548
Willcox, M. L., & Bodeker, G. (2004). Traditional herbal medicines for malaria. BMJ, 329(7475), 1156-1159. https://doi.org/10.1136/bmj.329.7475.1156
World Health Organization. (2015). Guidelines for the treatment of malaria (3rd ed.). https://www.who.int/publications/i/item/9789241549127
World Health Organization. (2021). World Malaria Report 2021. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
World Health Organization. (2021). World Malaria Report 2021. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
Xiao, X., et al. (2018). Pyrrolizidine alkaloids: Toxicity, metabolism and bioactivation in liver. Current Drug Metabolism, 19(2), 83-85.
Yener, Z., Celik, I., Ilhan, F., Bal, R. (2009). Effects of Urtica dioica L. seed on lipid peroxidation, antioxidants and liver pathology in aflatoxin-induced tissue injury in rats. Food and Chemical Toxicology, 47(2), 418-424
Zhai, K., Brockmüller, A., Kubatka, P., Shakibaei, M., & Büsselberg, D. (2020). Curcumin’s beneficial effects on neuroblastoma: mechanisms, challenges, and potential solutions. Biomolecules, 10(11), 1469.

Most read articles by the same author(s)

1 2 3 4 5 > >>