Review: Functions and Mechanism of Biochemical Markers in The Monitoring of Covid-19 Patients

Page Numbers: 409-458
Published: 2024-07-28
Digital Object Identifier: 10.58578/ajbmbr.v1i1.3485
Save this to:
Article Metrics:
Viewed : 19 times
Downloaded : 12 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Isaac John Umaru Federal University Wukari, Taraba State, Nigeria
  • Kaka Garpiya Yakubu Federal University Wukari, Taraba State, Nigeria
  • Kerenhappuch Isaac Umaru University of Higher Institute Buea, South West Cameroon, Cameroon

Abstract

COVID-19 is an infectious disease caused by the SARSCoV-2 virus, which has given rise to a global sanitary emergency. The clinical characteristics of COVID-19 are varied and can range from an asymptomatic infection to a mild to severe pneumonia. Recent studies have shown that different laboratory parameters become altered in these patients, and as such are useful as biomarkers to assess the progression of the disease and categorize patients that may present a severe and/or fatal clinical condition. This review analyzes biochemical and immunological markers that become altered in COVID-19 patients and their impact on different organs at a hepatic, cardiac, renal and pancreatic level, as well as markers of inflammation, analyzing their implications in the evolution of the disease.

Keywords: Functions; Mechanism; Biochemical; Markers; Monitoring; Covid-19; Patients
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Umaru, I. J., Yakubu, K. G., & Umaru, K. I. (2024). Review: Functions and Mechanism of Biochemical Markers in The Monitoring of Covid-19 Patients. African Journal of Biochemistry and Molecular Biology Research, 1(1), 409-458. https://doi.org/10.58578/ajbmbr.v1i1.3485

References

Abuelgasim E, Saw L J, Shirke M, Zeinah M, Harky A. COVID-19: Unique public health issues facing Black, Asian and minority ethnic communities. Mosby Inc; 2020. [PMC free article] [PubMed] [Google Scholar]
Andersen K G, Rambaut A, Lipkin W, Holmes E C, Garry R F. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450. doi: 10.1038/s41591-020-0820-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Ahn D G, Shin H J, Kim M H, Lee S, Kim H H, Myoung J, Kim B H, Kim S H. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19) J Microbiol Biotechnol. 2020;30(3):313. doi: 10.4014/jmb.2003.03011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Aabenhus R, Jensen J-US (2011) Procalcitonin-guided antibiotic treatment of respiratory tract infections in a primary care setting: are we there yet? Prim Care Respir J 20:360–367. https://doi.org/10.4104/pcrj.2011.00064
Akbari H, Tabrizi R, Lankarani KB et al (2020) The role of cytokine profle and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Life Sci 258:118167. https://doi.org/10.1016/j.lfs.2020.118167
Alecu M, Geleriu L, Coman G, Gălăţescu L (1998) The interleukin-1, interleukin-2, interleukin-6 and tumour necrosis factor alpha serological levels in localised and systemic sclerosis. Rom J Intern Med 36:251–259
Alnor A, Sandberg MB, Gils C, Vinholt PJ (2020) Laboratory tests and outcome for patients with coronavirus disease 2019: a systematic review and meta-analysis. J Appl Lab Med 5:1038. https://doi.org/10.1093/jalm/jfaa098
Aloisio E, Dolci A, Panteghini M (2019) Procalcitonin: between evidence and critical issues. Clin Chim Acta 496:7–12. https://doi.org/10.1016/j.cca.2019.06.010
Al-Samkari H, Karp Leaf RS, Dzik WH et al (2020) COVID-19 and coagulation: bleeding and thrombotic manifestations of SARSCoV-2 infection. Blood 136:489–500. https://doi.org/10.1182/blood.2020006520
Amin RF, El Bendary AS, Ezzat SE, Mohamed WS (2019) Serum ferritin level, microalbuminuria and non-alcoholic fatty liver disease in type 2 diabetic patients. Diabetes Metab Syndr 13:2226–2229.
https://doi.org/10.1016/j.dsx.2019.05.030 Aronson JK, Ferner RE (2017) Biomarkers—a general review. Curr Protoc Pharmacol 76:9.23.1-9.23.17. https://doi.org/10.1002/cpph.19
Attaway AH, Scheraga RG, Bhimraj A et al (2021) Severe covid-19 pneumonia: pathogenesis and clinical management. BMJ. https://doi.org/10.1136/bmj.n436
Atzeni F, Sarzi-Puttini P (2013) Tumor necrosis factor. In: Second E (ed) Maloy S, hughes KBT-BE of G. Academic Press, San Diego, pp 229–231
Azevedo RB, Botelho BG, de Hollanda JVG et al (2021) Covid-19 and the cardiovascular system: a comprehensive review. J Hum Hypertens 35:4–11. https://doi.org/10.1038/s41371-020-0387-4
Africa CDC. Africa CDC - COVID-19 daily updates. Africa CDC https://africacdc.org/covid-19/ (2020).
Banks WA, Kastin AJ, Gutierrez EG (1994) Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett 179:53–56. https://doi.org/10.1016/0304-3940(94)90933-4
Becker KL, Snider R, Nylen ES (2008) Procalcitonin assay in systemic infammation, infection, and sepsis: clinical utility and limitations. Crit Care Med 36:941–952. https://doi.org/10.1097/CCM.0B013E318165BABB
Benedict C, Scheller J, Rose-John S et al (2009) Enhancing infuence of intranasal interleukin-6 on slow-wave activity and memory consolidation during sleep. FASEB 23:3629–3636. https://doi.org/10.1096/f.08-122853
Bhandari S, Rankawat G, Singh A et al (2020) eval_uation of interleukin-6 and its association with the severity of disease in COVID-19 patients. Indian J Med Spec 11:132–136. https://doi.org/10.4103/INJMS.INJMS_63_20
Black S, Kushner I, Samols D (2004) C-reactive protein. J Biol Chem 279:48487–48490
Boehm E, Kronig I, Neher RA et al (2021) Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clin Microbiol Infect 27:1109–1117. https://doi.org/10.1016/j.cmi.2021.05.022
Bozkurt FT, Tercan M, Patmano G et al (2021) Can ferritin levels predict the severity of illness in patients with COVID-19? Cureus 13: e12832–e12832. https://doi.org/10.7759/cureus.12832
. Bowale A et al. (2020) Clinical presentation, case management and outcomes for the first 32 COVID-19 patients in Nigeria. Pan African Medical Journal 35, 24–27. [Google Scholar]
Chan J F, Yip C C, To K K, Tang T H, Wong S C, Leung K H, et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens J Clin Microbiol. 2020;58(5) [PMC free article] [PubMed] [Google Scholar]
Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. Journals Medical Virology. J Med Virol. 2020;92(5):522-8.
Cannizzaro E, Ramaci T, Cirrincione L, Plescia F. Work-related stress, physiopathological mechanisms, and the influence of environmental genetic factors. International journals
Decaro N, Tidona C, Darai G. Gammacoronavirus. In Coronaviridae. The springer index of viruses. Springer. 2015;403-13.
de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV et al. Family yyy Coronaviridae. Rep Int Committee Taxon Viruses. Ninth. 2015:806-28.
Dong X, Cao Y -Y, Lu X -X, Zhang J -J, Du H, Yan Y -Q, et al. Eleven faces of coronavirus disease 2019. Allergy. 2020:1–11. [Google Scholar]
Ebenso B and Otu A (2020) Can Nigeria contain the COVID-19 outbreak using lessons from recent epidemics? The Lancet Global Health 8, e770. [PMC free article] [PubMed] [Google Scholar]
Estevão A. Artículo de opinión: COVID-19 Acta Radiológica Portuguesa. 2020;32(1):1. [Google Scholar]
Gorbalenya A E, Baker S C, Baric R S, de Groot R J, Drosten C, Gulyaeva A A, et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology. 2020;5(4):536. doi: 10.1038/s41564-020-0695-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Guo Y, Cao Q, Hong Z, Tan Y, Chen S, Jin H et al. The origin Yan Yan, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—an update on the status. Mil. Med Resour. 2020; 7:11.
Geller C, Varbanov M, Duval RE. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses. 2012;4(11):3044-68.
Harding A, Lanese N. The 12 deadliest viruses on earth. Livescience. 2020; 7:12.
Hamming I, Timens W, Bulthuis M, Lely A T, Navis G J, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631. doi: 10.1002/path.1570. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Henry BM, Lippi G. Poor survival with extracorporeal membrane oxygenation in acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19): Pooled analysis of early reports. J Crit Care. 2020; 58:27–28. doi: 10.1016/j.jcrc.2020.03.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B. et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020:105949. doi: 10.1016/j.ijantimicag.2020.105949. [PMC free article] [PubMed] [CrossRef] [Google Schola
Lai C C, Shih T P, Ko W C, Tang H J, Hsueh P R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges.
Loeffelholz M J, Tang Y. Laboratory diagnosis of emerging human coronavirus infections: The state of the art. Emerg Microbes Infect. 2020;9(1):747. doi: 10.1080/22221751.2020.1745095. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Lian J, Jin X, Hao S, Jia H, Cai H, Zhang X, et al. Epidemiological, clinical, and virological characteristics of 465 hospitalized cases of coronavirus disease 2019 (COVID-19) from Zhejiang province in China. Influenza Other Respir Viruses. 2020;14(5):564. doi: 10.1111/irv.12758. [PMC free article] [PubMed] [CrossRef] [Google Scholar
Martha JW, Wibowo A, Pranata R (2021) Prognostic value of elevated lactate dehydrogenase in patients with COVID-19: a systematic review and meta-analysis. Postgrad Med J. https://doi.org/10.1136/postgradmedj-2020-139542
Martinez-Outschoorn UE, Prisco M, Ertel A et al (2011) Ketones and lactate increase cancer cell “stemness”, driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell Cycle 10:1271–1286. https://doi.org/10.4161/cc.10.8.15330
Martinez-Urbistondo M, Mora-Vargas A, Expósito-Palomo E et al (2020) Infammatory-related clinical and metabolic outcomes in COVID-19 patients. Mediat Infamm 2020:2914275. https://doi.org/10.1155/2020/2914275
Masi P, Hékimian G, Lejeune M et al (2020) Systemic infammatory response syndrome is a major contributor to COVID-19-associated coagulopathy: Insights from a prospective, single-center cohort study. Circulation 142:611–614
Mayeux R (2004) Biomarkers: potential uses and limitations. NeuroRx 1:182–188. https://doi.org/10.1602/neurorx.1.2.182
Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA et al (2020) ACE2: the molecular doorway to SARS-CoV-2. Cell Biosci 10:148. https://doi.org/10.1186/s13578-020-00519-8
Melo AKG, Milby KM, Caparroz ALMA et al (2021) Biomarkers of cytokine storm as red fags for severe and fatal COVID-19 cases: a living systematic review and meta-analysis. PLoS ONE 16:e0253894
Mo X-N, Su Z-Q, Lei C-L et al (2020) Serum amyloid A is a predictor for prognosis of COVID-19. Respirology 25:764–765. https://doi.org/10.1111/resp.13840
Mortaz E, Tabarsi P, Jamaati H et al (2021) Increased serum levels of soluble TNF-α receptor is associated with ICU mortality in COVID-19 patients. Front Immunol 12:1321. https://doi.org/10.3389/fmmu.2021.592727
Moshkovskii SA (2012) Why do cancer cells produce serum amyloid A acute-phase protein? Biochemistry (Mosc) 77:339–341. https://doi.org/10.1134/S0006297912040037
Narazaki M, Kishimoto T (2018) The two-faced cytokine IL-6 in host defense and diseases. Int J Mol Sci 19:3528. https://doi.org/10.3390/ijms19113528
Nehring SM, Goyal A, Bansal P, Patel BC (2021) C reactive protein. StatPearls Publishing, Treasure Island (FL)
Nigeria Centre for Disease Control (2020) An update of COVID-19 outbreak in Nigeria. https://ncdc.gov.ng
Int J Antimicrob Agents. 2020;55(3) doi: 10.1016/j.ijantimicag.2020.105924. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
International journal of antimicrobial Agents volume 55, issue 4, April 2020, 105946.
Penninger J M, Ohto-Nakanishi T, Kuba K, Imai Y. Angiotensin-converting enzyme 2 (ACE2) in disease patho genesis. Circ J. 2010;74(3):405. doi: 10.1253/circj.cj-10-0045. [PubMed] [CrossRef] [Google Scholar]
Tan C, Huang Y, Shi F et al (2020) C-reactive protein correlates with computed tomographic fndings and predicts severe COVID-19 early. J Med Virol 92:856–862. https://doi.org/10.1002/jmv.25871
Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6: a016295. https://doi.org/10.1101/cshperspect.a016295
Targońska-Stępniak B, Majdan M (2014) Serum amyloid A as a marker of persistent infammation and an indicator of cardiovascular and renal involvement in patients with rheumatoid arthritis. Mediat Infamm 2014:793628. https://doi.org/10.1155/2014/793628
Xu J, Zhao S, Teng T, Abdalla A E, Zhu W, Xie L, et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV Viruses. 2020;12(2):1. [PMC free article] [PubMed] [Google Scholar]
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444. doi: 10.1126/science. abb2762. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130-7.
Zhang MQ, Wang XH, Chen YL, Zhao KL, Cai YQ, An CL et al. Clinical features of 2019 novel coronavirus pneumonia in the early stage from a fever clinic in Beijing. Chin J Tuberc Respir Dis. 2020; 43:13.
Zhou P, Lou YX, Wang XG et al (2020a) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273. https://doi.org/10.1038/s41586-020-2012-7
Zhou Y, Ding N, Yang G et al (2020b) Serum lactate dehydrogenase level may predict acute respiratory distress syndrome of patients with fever infected by SARS-CoV-2. Ann Transl Med 8:1118. https://doi.org/10.21037/atm-20-2411
Zinellu A, Paliogiannis P, Carru C, Mangoni AA (2021) Serum amyloid A concentrations, COVID-19 severity and mortality: an updated systematic review and meta-analysis. Int J Infect Dis 105:668–674. https://doi.org/10.1016/J.IJID.2021.03.025

Most read articles by the same author(s)

1 2 3 4 5 > >>