A Review of Phycoremediation of Heavy Metals in Industrial Waste Water

Page Numbers: 78-109
Published
2024-01-28
Digital Object Identifier: 10.58578/mikailalsys.v2i1.2660
Save this to:
Article Metrics:
Viewed : 114 times
Downloaded : 70 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)

Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Ikwebe Joseph Federal University Wukari, Nigeria
  • Bando Christopher David National Biotechnology Development Agency, Jalingo, Nigeria
  • Ajiduku Leyoa Abershi Taraba State University, Jalingo, Nigeria

Abstract

Environmental Pollutants such as heavy metals poised serious threat to biological systems. Heavy metals which could be natural or anthropogenic sourced are non-degradable pollutants and must be eliminated or reduced to certain quantity that is analytically presumed to be a safe limit before discharging into the environment to avoid injurious effects on biological systems. This review work showed the abilities of microalgae to biologically remove heavy metals from waste water through the process known as ‘Phycoremediation’. Phycoremediation of heavy metals with the help of microalgae takes place in two stages: Biosorption and Bioaccumulation. Microalgae such as Nannochloropsis oculata, Scenedesmus sp, Scenedesmus obtusus, Gracilaria corticata, Sarcodia suidae and Spirulina sp has been proven to phycoremediate; Pb, Cr, Hg, As, Cd, and Cu respectively. Therefore, this review work has shown that the microalgae are efficient biological vectors for heavy metal uptake.

Keywords: Microalgae; Phycoremediation; Heavy metals; Bioremediation; Waste water

Citation Metrics:






Downloads

Download data is not yet available.
How to Cite
Joseph, I., David, B. C., & Abershi, A. L. (2024). A Review of Phycoremediation of Heavy Metals in Industrial Waste Water. Journal of Multidisciplinary Science: MIKAILALSYS, 2(1), 78-109. https://doi.org/10.58578/mikailalsys.v2i1.2660

References

Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N. K., Khan, M. I., Hussain, M. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. International journal of environmental research and public health, 15(1), 59.
Abd Rahman, N.J, A. Ramli, K. Jumbri, Y. Uemura, Waste Biomass Valorization (2019).
Abdul, K. S. M., Jayasinghe, S. S., Chandana, E. P., Jayasumana, C., De Silva, P. M. C. (2015). Arsenic and human health effects: A review. Environmental toxicology and pharmacology, 40(3), 828-846.
Abuchi Elebo, Onyekachi Onyekwere, N.M. Hassan, S.O. Ottah, David C. Bando, A.J.Tutuwa, Victor U. Ugochukwu, G.C. Anigbo, I. Nuhu. (2022). Bioremediation of crude oilcontaminated soil using blended mixture of fish and piggery wastes as bio-stimulating agents. Journal of mining and geotechnical engineering. 1(16):16. DOI: 10.26730/2618-7434-2022-1-16-30.
Al-Battashi, H., Joshi, S. J., Pracejus, B., Al-Ansari, A. (2016). The geomicrobiology of chromium (VI) pollution: microbial diversity and its bioremediation potential. The Open Biotechnology Journal, 10(1).
Al-Bayati, M. A., Jamil, D. A., Al-Aubaidy, H. A. (2015). Cardiovascular effects of copper deficiency on activity of superoxide dismutase in diabetic nephropathy. North American journal of medical sciences, 7(2), 41.
Al-Homaidan, A. A., Alabdullatif, J. A., Al-Hazzani, A. A., Al-Ghanayem, A. A., Alabbad, A. F. (2015). Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi Journal of Biological Sciences, 22(6), 795-800.
Al-Homaidan, A. A., Al-Qahtani, H. S., Al-Ghanayem, A. A., Ameen, F., Ibraheem, I. B. (2018). Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi Journal of Biological Sciences, 25(8), 1733-1738.
Ali, H., E. Khan, I. Ilahi, (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation, J. Chem., doi: 10.1155/2019/6730305
Al-Makishah, N. H., Taleb, M., and Barakat, M. A. (2020). Arsenic bioaccumulation in arsenic-contaminated soil: a review. Chemical Papers, 74(9), 2743-2757.
Ammar, S.H, H.J. Khadim, and A.I. Mohamed, Environ. Technol. Innov. 10, 132 (2018).
Amuda, O. S., Alade, A. O., Hung, Y. T., Wang, L. K., Wang, M. H. S. (2017). Toxicity, sources, and control of Copper (Cu), Zinc (Zn), Molybdenum (Mo), Silver (Ag), and rare earth elements in the environment. In Handbook of Advanced Industrial and Hazardous Wastes Management (pp. 1-26). CRC Press.
Anant, J. K., Inchulkar, S. R., Bhagat, S. (2018). An overview of copper toxicity relevance to public health. EJPMR, 5(11), 232-237.
Anastopoulos, I., Kyzas, G. Z. (2015). Progress in batch biosorption of heavy metals onto algae. Journal of Molecular Liquids, 209, 77-86.
Arriada, A.A., P.C. Abreu, Braz. J. Pet. Gas 8, 119 (2014).
Ayele, A., Godeto, Y. G. (2021). Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. Journal of Chemistry.
Bando C.D, Ikwebe J, Imo C, Jummai AT, Jesse SP, Imbasire N, Rejoice HT, Odiba EO, Tsoken DA. (2023). Evaluation of heavy metals deposition on selected agricultural products dried in local kitchens and roadsides, Wukari, Nigeria. Journal of Biological Pharmaceutical and Chemical Research. 10(2): 1-19.
Bando C. D., Ikwebe J., Tutuwa A. J., Oche G.S., Odiba E. O. David H. E. (2019). Heavy metal and polyaromatic hydrocarbon depositions on local kitchen and roadside sun-dried agricultural products in Nigeria: A public health concern. International Journal of Advanced Biochemistry Research. 3(1): 59-65.
Bando, C.D., Emmanuel O. P., Oche G. S., David H. E., Poly S. J., Imbasire N. (2022). An Investigative screening of heavy metal contamination of Amaranthus spp grown along Ibi river-bank,Taraba State, Nigeria. African Journal of Biological, Chemical and Physical sciences. 1(1):34-39.
Bernard A. (2008). Cadmium and its adverse effects on human health. Indian J Med Res 128(4): 557–564.
Bertagnolli, C., da Silva, M. G. C., Guibal, E. (2014). Chromium biosorption using the residue of alginate extraction from Sargassum filipendula. Chemical Engineering Journal, 237, 362-371.
Bharagava, R. N., Saxena, G., Mulla, S. I., Patel, D. K. (2018). Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Archives of environmental contamination and toxicology, 75(2), 259-272.
Blaby-Haas, C. E., Merchant, S. S. (2012). The ins and outs of algal metal transport. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(9), 1531-1552.
Boretti, A., & Rosa, L. (2019). Reassessing the projections of the world water development report. NPJ Clean Water, 2(1), 1-6.
Bulgariu, L. Gavrilescu, M. (2015). Bioremediation of Heavy Metals by Microalgae. In Handbook of Marine Microalgae: Biotechnology Advances. https://doi.org/10.1016/B978-0-12-800776-1.00030-3
Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of environmental chemical engineering, 5(3), 2782-2799.
Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., and Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS microbiology reviews, 25(3), 335-347.
Chai, W. S., Tan, W. G., Munawaroh, H. S. H., Gupta, V. K., Ho, S. H., Show, P. L. (2021). Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environmental Pollution, 269, 116236.
Chandrashekharaiah, P., D. Sanyal, S. Dasgupta, A. Banik, Cadmium biosorption and biomass production by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa: an integrated approach, Chemosphere 269 (xxxx) (2021) 1–12, doi: 10.1016/j.chemosphere.2020.128755
Chen, Q. Y., Costa, M. (2021). Arsenic: a global environmental challenge. Annual Review of Pharmacology and Toxicology, 61, 47-63.
Croot, P. L., Bengt, K., Van Elteren, J. T., and Kroon, J. J. (2003). Uptake and efflux of 64Cu by the marine cyanobacterium Synechococcus (WH7803). Limnology and Oceanography, 48(1), 179-188.
Danouche, M., El Ghachtouli, N., El Arroussi, H. (2021). Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon, 7(7), e07609.
Deng, J., D. Fu, W. Hu, X. Lu, Y. Wu, H. Bryan. (2020). Physiological responses and accumulation ability of Microcystis aeruginosa to zinc and cadmium: implications for bioremediation of heavy metal pollution, Bioresour. Technol. 303 (November 2019) (2020) 1–11, doi: 10.1016/j.biortech.2020.122963
Derco J., Vrana, B. (2018) “Introductory Chapter: Biosorption,”in Biosorption, 1–19,
DesMarias, T. L., & Costa, M. (2019). Mechanisms of chromium-induced toxicity. Current opinion in toxicology, 14, 1-7.
Dobrowolski, J. W., Bedla, D., Czech, T., Gambuś, F., Górecka, K., Kiszczak, W., Zabochnicka-Świątek, M. (2017). Integrated innovative biotechnology for optimization of environmental bioprocesses and a green economy. In Optimization and applicability of bioprocesses (pp. 27-71). Springer, Singapore.
Duncan, E. G., Maher, W. A., Foster, S. D. (2015). Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems. Environmental Science & Technology, 49(1), 33-50.
Elahi, A., Arooj, I., Bukhari, D. A., Rehman, A. (2020). Successive use of microorganisms to remove chromium from wastewater. Applied Microbiology and Biotechnology, 104(9), 3729-3743.
Engwa, G. A., Ferdinand, P. U., Nwalo, F. N., Unachukwu, M. N. (2019). Mechanism and health effects of heavy metal toxicity in humans. Poisoning in the modern world-new tricks for an old dog, 10, 70-90.
Fatima, S., Muzammal, M., Rehman, A., Rustam, S. A., Shehzadi, Z., Mehmood, A., Waqar, M. (2020). Water pollution on heavy metals and its effects on fishes. Int. J. Fish. Aquat. Stud, 8, 6-14.
Flora, S. J. (2015). Arsenic: chemistry, occurrence, and exposure. In Handbook of arsenic toxicology (pp. 1-49). Academic Press.
Focardi, S., Pepi, M., Focardi, S. E. (2013). Microbial reduction of hexavalent chromium as a mechanism of detoxification and possible bioremediation applications. Biodegradation-life of science, 321-347.
Franchitto, N., Gandia-Mailly, P., Georges, B., Galinier, A., Telmon, N., Ducassé, J. L., Rougé, D. (2008). Acute copper sulphate poisoning: a case report and literature review. Resuscitation, 78(1), 92-96.
Gaetke, L. M., Chow-Johnson, H. S., Chow, C. K. (2014). Copper: toxicological relevance and mechanisms. Archives of toxicology, 88(11), 1929-1938.
Gao, F., Li, C., Yang, Z. H., Zeng, G. M., Mu, J., Liu, M., Cui, W. (2016). Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor. Journal of Chemical Technology & Biotechnology, 91(10), 2713-2719.
Gaur, A., and Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 528-534.
GracePavithra, K., Jaikumar, V., Kumar, P. S., SundarRajan, P. (2019). A review on cleaner strategies for chromium industrial wastewater: present research and future perspective. Journal of Cleaner Production, 228, 580-593.
Guo, G., Guan, J., Sun, S., Liu, J., Zhao, Y. (2020). Nutrient and heavy metal removal from piggery waste water and CH4 enrichment in biogas based on microalgae cultivation technology under different initial inoculum concentration. Water Environment Research, 92(6), 922-933.
Hala, Y., Taba P., Langan, F.R. A. (2014). Chem. Prog. 7.
Han, T.W., C.C. Tseng, M. Cai, K. Chen, S.Y. Cheng, J. Wang. (2020). Effects of cadmium on bioaccumulation, bioabsorption, and photosynthesis in Sarcodia suiae, Int. J. Environ. Res. Public Health 17 (4) : 1–12.
He, J., Chen, J. P. (2014). A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresource technology, 160, 67-78.
Huang, R., G. Huo, S. Song, Y. Li, L. Xia, J.F. Gaillard. (2019). Immobilization of mercury using high-phosphate culture-modified microalgae, Environ. Pollut. 254:1–10.
Ibrahim, W. M., Hassan, A. F., Azab, Y. A. (2016). Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egyptian journal of basic and applied sciences, 3(3), 241-249.
Imani, S., S. Rezaei-Zarchi, M. Hashemi, H. Borna, A. Javid, A.M. Zand, and H.B. Abarghouei, J. Med. Plants Res. 5, 2775 (2011).
Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., and Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological indicators, 48, 282-291.
Jasrotia, S., Kansal, A., Kishore, V. V. N. (2014). Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy. Microchemical journal, 114, 197-202.
Javanbakht, V., Alavi, S. A., Zilouei, H. (2014). Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science and Technology, 69(9), 1775-1787.
Jiang, Y., Purchase, D., Jones, H., Garelick, H. (2011). Effects of arsenate (As5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris. International journal of phytoremediation, 13(8), 834-844.
Jobby, R., Jha, P., Yadav, A. K., Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: a comprehensive review. Chemosphere, 207, 255-266.
Kalinowska, R., Pawlik-Skowrońska, B. (2010). Response of two terrestrial green microalgae (Chlorophyta, Trebouxiophyceae) isolated from Cu-rich and unpolluted soils to copper stress. Environmental Pollution, 158(8), 2778-2785.
Kenney, L. J., Kaplan, J. H. (1988). Arsenate substitutes for phosphate in the human red cell sodium pump and anion exchanger. Journal of Biological Chemistry, 263(17), 7954-7960.
Khalid, S., Shahid, M., Niazi, N. K., Rafiq, M., Bakhat, H. F., Imran, M., and Dumat, C. (2017). Arsenic behaviour in soil-plant system: biogeochemical reactions and chemical speciation influences. In Enhancing cleanup of environmental pollutants (pp. 97-140). Springer, Cham.
Kwon, D. H., Cha, H. J., Lee, H., Hong, S. H., Park, C., Park, S. H., Choi, Y. H. (2019). Protective effect of glutathione against oxidative stress-induced cytotoxicity in RAW 264.7 macrophages through activating the nuclear factor erythroid 2-related factor-2/heme oxygenase-1 pathway. Antioxidants, 8(4), 82.
Lagunas, R. (1980). Sugar-arsenate esters: thermodynamics and biochemical behavior. Archives of biochemistry and biophysics, 205(1), 67-75.
Larson, C. A. Passy, S. I. (2012). Taxonomic and functional composition of the algal benthos exhibits similar successional trends in response to nutrient supply and current velocity. FEMS Microbiology Ecology, 80(2): 352-362.
Lavoie, I., Hamilton, P. B., Morin, S., Tiam, S. K., Kahlert, M., Gonçalves, S., Taylor, J. C. (2017). Diatom teratologies as biomarkers of contamination: are all deformities ecologically meaningful?. Ecological Indicators, 82, 539-550.
Lee, L., Hsu, C. Y., Yen, H. W. (2017). The effects of hydraulic retention time (HRT) on chromium (VI) reduction using autotrophic cultivation of Chlorella vulgaris. Bioprocess and biosystems engineering, 40(12), 1725-1
Leong, Y. K., Chang, J. S. (2020). Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource technology, 303, 122886.
Leong, Y.K., J.S. Chang (2020). Bioremediation of heavy metals using microalgae: recent advances and mechanisms, Bioresour. Technol. 303 (January). 1–11, doi: 10. 1016/j.biortech.2020.122886
Liu, J., Waalkes, M. P. (2008). Liver is a target of arsenic carcinogenesis. Toxicological sciences, 105(1), 24-32.
Lud, W., Wahyu, P., and Zubaidi, B. (2020). Potential bioremediation of lead (Pb) using marine microalgae Nannochloropsis oculata. AIP Conference Proceedings 2231.
Mahdavi, H., Ulrich, A. C., Liu, Y. (2012). Metal removal from oil sands tailings pond water by indigenous micro-alga. Chemosphere, 89(3), 350-354.
Maity, J. P., Bundschuh, J., Chen, C. Y., Bhattacharya, P. (2014). Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives–A mini review. Energy, 78, 104-113.
Martínez-Macias, M. D. R., Correa-Murrieta, M. A., Villegas-Peralta, Y., Dévora-Isiordia, G. E., Álvarez-Sánchez, J., Saldivar-Cabrales, J., Sánchez-Duarte, R. G. (2019). Uptake of copper from acid mine drainage by the microalgae Nannochloropsis oculata. Environmental Science and Pollution Research, 26(7), 6311-6318.
Martins, B.L., C.C.V. Cruz, A.S. Luna, C.A. Henriques, Biochem. Eng. J. 27, 310 (2006).
McNeill, L. S., McLean, J. E., Parks, J. L., Edwards, M. A. (2012). Hexavalent chromium review, part 2: Chemistry, occurrence, and treatment. Journal‐American Water Works Association, 104(7), E395-E405.
Mehmood, A., Mirza, M. A., Choudhary, M. A., Kim, K. H., Raza, W., Raza, N., Sarfraz, M. (2019). Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment. Environmental research, 168, 382-388.
Minas, F., Chandravanshi, B. S., Leta, S. (2017). Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia. Chem. Int, 3(4), 291-305.
Mishra, S., and Bharagava, R. N. (2016). Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. Journal of Environmental Science and Health, Part C, 34(1), 1-32.
Mofeed, J. (2020). Impacts of ZnO nanoparticles on growth and antioxidant enzymes of the green alga Scenedesmus obliquus. Afr.J.Bio.Sc., 2(4): 1-12.
Mofeed, J., Mosleh, Y. Y. (2013). Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture. Ecotoxicology and Environmental Safety, 95, 234-240.
Mohita, C., Lakhan, K., Maulin, P. S. Navneeta, B. (2022). Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus 7. 100129.
Monteiro, C. M., Castro, P. M., Malcata, F. X. (2012). Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnology progress, 28(2), 299-311.
Morin, S., Vivas-Nogues, M., Duong, T. T., Boudou, A., Coste, M., and Delmas, F. (2007). Dynamics of benthic diatom colonization in a cadmium/zinc-polluted river (Riou-Mort, France). Fundamental and applied limnology, 168(2), 179.
Mosleh, Y. Y. I., and Almagrabi, O. A. E. (2013). Heavy metal accumulation in some vegetables irrigated with treated wastewater. Int. J. Green Herbal Chem, 2, 81-90.
Mosleh, Y. Y., Mofeed, J., Almaghrabi, O. A., Kadasa, N. M., El-Alzahrani, H. S., and Fuller, M. P. (2014). Residues of heavy metals, PCDDs, PCDFs, and DL-PCBs some medicinal plants collected randomly from the Jeddah, central market. Life Sci. J, 11(7), 1-8.
Musgrave, W. B., Yi, H., Kline, D., Cameron, J. C., Wignes, J., Dey, S., and Jez, J. M. (2013). Probing the origins of glutathione biosynthesis through biochemical analysis of glutamate-cysteine ligase and glutathione synthetase from a model photosynthetic prokaryote. Biochemical Journal, 450(1), 63-72.
Najeeb A,B, Waqar Ahmad C, Munir Hussain Zia D, Zaffar Malik A, Weijun Zhou. (2017). Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arabian Journal of Chemistry. 10, S3310–S3317.
Narula, P., Mahajan, A., Gurnani, C., Kumar, V., and Mukhija, S. (2015). Microalgae as an indispensable tool against heavy metals toxicity to plants: a review. Int J Pharm Sci Rev Res, 31(1), 86-93.
Naskar, A., and Bera, D. (2018). Mechanistic exploration of Ni (II) removal by immobilized bacterial biomass and interactive influence of coexisting surfactants. Environmental Progress & Sustainable Energy, 37(1), 342-354.
Nouha, K., Kumar, R. S., and Tyagi, R. D. (2016). Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods. Bioresource technology, 212, 120-129.
Omar, W. M. W. (2010). Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to Malaysian freshwater ecosystems. Tropical Life Sciences Research, 21(2), 51–67.
Oram, B.,Water Res. Cent. (2014).
Peng, K. T., Zheng, C. N., Xue, J., Chen, X. Y., Yang, W. D., Liu, J. S., and Li, H. Y. (2014). Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. Journal of agricultural and food chemistry, 62(35), 8773-8776.
Podder, M.S., Majumder, C.B., 2017. Prediction of phycoremediation of As(III) and As(V) from synthetic wastewater by Chlorella pyrenoidosa using artificial neural network.
Pradhan, D., Sukla, L. B., Mishra, B. B., & Devi, N. (2019). Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. Journal of Cleaner Production, 209, 617-629.
Pradhan, D., Sukla, L. B., Mishra, B. B., & Devi, N. (2019). Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. Journal of Cleaner Production, 209, 617-629.
Purnamawati, F.S., T.R. Soeprobowati, and M. Izzati, in Peran Biol. Dalam Meningkat. Produkt. Yang Menunjang Ketahanan Pangan, edited by Indra Gunawan, Sunariyah, Widodo, and Sugiyatno (Jurusan biologi FSM UNDIP, Semarang, 2013), pp. 104–116.
Quansah, R., Armah, F. A., Essumang, D. K., Luginaah, I., Clarke, E., Marfoh, K., ... & Dzodzomenyo, M. (2015). Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environmental health perspectives, 123(5), 412-421.
Quigg, A., Reinfelder, J. R., & Fisher, N. S. (2006). Copper uptake kinetics in diverse marine phytoplankton. Limnology and oceanography, 51(2), 893-899.
Rahman, Z., and Thomas, L. (2021). Chemical-assisted microbially mediated chromium (Cr)(VI) reduction under the influence of various electron donors, redox mediators, and other additives: an outlook on enhanced Cr (VI) removal. Frontiers in Microbiology, 11, 619766.
Raven, J. A., & Giordano, M. (2016). Combined nitrogen in" The Physiology of Microalgae".
Ravenscroft, P., Brammer, H., & Richards, K. (2011). Arsenic pollution: a global synthesis. John Wiley & Sons.
Renuka, N., Sood, A., Prasanna, R., and Ahluwalia, A. S. (2015). Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-014-0700-2.
Saxena, G., Kishor, R., and Bharagava, R. N. (2020). Application of microbial enzymes in degradation and detoxification of organic and inorganic pollutants. In Bioremediation of industrial waste for environmental safety (pp. 41-51). Springer, Singapore.
Scheiber, I., Dringen, R., and Mercer, J. F. (2013). Copper: effects of deficiency and overload. Interrelations between essential metal ions and human diseases, 359-387.
Schultze-Lam, S., Urrutia-Mera, M., and Beveridge, T. J. (2018). Metal and silicate sorption and subsequent mineral formation on bacterial surfaces: subsurface implications. Metal contaminated aquatic sediments, 111-147.
Segura, M. B., Rodríguez, L. H., Ospina, D. P., Bolaños, A. V., and Perez, K. (2016). Using Scenedesmus sp. for the phycoremediation of tannery wastewater. Tecciencia, 11(21), 69-75.
Seidler, A., Jähnichen, S., Hegewald, J., Fishta, A., Krug, O., Rüter, L., ... & Straube, S. (2013). Systematic review and quantification of respiratory cancer risk for occupational exposure to hexavalent chromium. International archives of occupational and environmental health, 86(8), 943-955.
Sen, M., and Dastidar, M. G. (2010). Chromium removal using various biosorbents. Journal of Environmental Health Science & Engineering, 7(3), 182-190.
Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., and Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513-533.
Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment international, 31(5), 739-753.
Sharma, M. C., Joshi, C., Pathak, N. N., and Kaur, H. (2005). Copper status and enzyme, hormone, vitamin and immune function in heifers. Research in veterinary science, 79(2), 113-123.
Shen, S., Li, X. F., Cullen, W. R., Weinfeld, M., Le, X. C. (2013). Arsenic binding to proteins. Chemical reviews, 113(10), 7769-7792.
Singh, D. V., Bhat, R. A., Upadhyay, A. K., Singh, R., and Singh, D. P. (2021). Microalgae in aquatic environs: a sustainable approach for remediation of heavy metals and emerging contaminants. Environmental Technology & Innovation, 21, 101340.
Sirakov, I.N. and K.N. Velichkova, Bulg. J. Agric. Sci. 20, 66 (2014).
Solisio, C., S. Al Arni, A. Converti. (2019) Adsorption of inorganic mercury from aqueous solutions onto dry biomass of Chlorella vulgaris: kinetic and isotherm study, Environ. Technol. 40 (5):664–672, doi: 10.1080/09593330.2017.1400114
Sonone, S. S., Jadhav, S., Sankhla, M. S., Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioScience, 10(2), 2148-2166.
Søren, L. N., Emma, L., Tanya, C., Malgorzata, S. and Elijah, O. A. (2018). Using Chlorella vulgaris to remediate Mercury and Copper from low-level contaminated water. Roskilde University Bachelor Project.
Suhendrayatna, in Semin. -Air Bioteknol. Untuk Indones. Abad 21 (2001), pp. 1–9.
Sun, H., Brocato, J., Costa, M. (2015). Oral chromium exposure and toxicity. Current environmental health reports, 2(3), 295-303.
Suresh Kumar, K., Dahms, H. U., Won, E. J., Lee, J. S., Shin, K. H. (2015). Microalgae - A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2014.12.019
Sutton D, Tchounwou PB, Ninashvili N, Shen E. (2002). Mercury induces cytotoxicity, and transcriptionally activates stress genes in human liver carcinoma cells. Intl J Mol Sci. 3:9, 965–984.
Terry, P. A., Stone, W. (2002). Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere, 47(3), 249-255.
Topcuoğlu, S., Güven, K. C., Balkıs, N., Kırbaşoğlu, Ç. (2003). Heavy metal monitoring of marine algae from the Turkish Coast of the Black Sea, 1998–2000. Chemosphere, 52(10), 1683-1688.
Tsang, T.; Davis, C.I.; Brady, D.C.(2018) Copper biology. Curr. Biol. CB, 421(31)–427.

Tumolo, M., Ancona, V., De Paola, D., Losacco, D., Campanale, C., Massarelli, C., Uricchio, V. F. (2020). Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. International journal of environmental research and public health, 17(15), 5438.
Umer, M. I., Abduljabar, P. A., and Hamid, N. A. (2018, December). Assessment of Ground Water Pollution by Heavy Metals and Anions in Kwashe Industrial Area, Duhok City, Kurdistan Region. Iraq. In IOP Conference Series: Materials Science and Engineering (Vol. 454, No. 1, p. 012004). IOP Publishing.
Vo, M.-T., V.-T. Nguyen, T.-M.-C. Vo, T.-N.-P. Bui, T.-S. Dao. (2020). Responses of green algae and diatom upon exposure to chromium and cadmium, Vietnam J. Sci. Technol. Eng. 62 (1) (2020) 69–73, doi: 10.31276/vjste.62(1).69-73
Wai, K. M., Wu, S., Li, X., Jaffe, D. A., Perry, K. D. (2016). Global atmospheric transport and source-receptor relationships for arsenic. Environmental Science & Technology, 50(7), 3714-3720.
Wang, J., and Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology advances, 27(2), 195-226.
Wang, Y., Wang, S., Xu, P., Liu, C., Liu, M., Wang, Y., Ge, Y. (2015). Review of arsenic speciation, toxicity and metabolism in microalgae. Reviews in Environmental Science and Bio/Technology, 14(3), 427-451.
Wang, Y., Zhang, C., Zheng, Y., and Ge, Y. (2017). Bioaccumulation kinetics of arsenite and arsenate in Dunaliella salina under different phosphate regimes. Environmental Science and Pollution Research, 24(26), 21213-21221.
Wardhany, S.Y., Analisa Kemampuan Mikroalga Nannochloropsis Sp. Sebagai Bioremediator Timbal (Pb) Dengan Konsentrasi Berbeda, Universitas Brawijaya, 2011.
Yang, F., and Massey, I. Y. (2019). Exposure routes and health effects of heavy metals on children. Biometals, 32(4), 563-573.
Yang, I. S., Salama, E. S., Kim, J. O., Govindwar, S. P., Kurade, M. B., Lee, M., Jeon, B. H. (2016). Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal. Energy Conversion and Management, 117, 54-62.
Yen, H. W., Chen, P. W., Hsu, C. Y., Lee, L. (2017). The use of autotrophic Chlorella vulgaris in chromium (VI) reduction under different reduction conditions. Journal of the Taiwan Institute of Chemical Engineers, 74, 1-6.
Yen, H. W., Chen, P. W., Hsu, C. Y., Lee, L. (2017). The use of autotrophic Chlorella vulgaris in chromium (VI) reduction under different reduction conditions. Journal of the Taiwan Institute of Chemical Engineers, 74, 1-6.
Yongsheng W, Qihui L, Qian T. (2011). Effect of Pb on growth, accumulation and quality component of tea plant. Procedia Engineering. 18:214–219.
Yoshida, K., H. Ishii, Y. Ishihara, H. Saito, Y. Okada, Appl. Biochem. Biotechnol. 157, 321 (2009).
Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17, 145-156.
Yue, Y., Liu, J., He, C. (2015). RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes & development, 29(13), 1343-1355.
Zhang, J., Zhou, F., Liu, Y., Huang, F., & Zhang, C. (2020). Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa. Science of The Total Environment, 704, 135368.
Zhang, W., Tan, N. G., Fu, B., Li, S. F. (2015). Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress. Metallomics, 7(3), 426-438.