Synthesis of SiO2/TiO2 Core – Shell Nanofibres for Photodegradation of Hexamethyldisiloxane

Page Numbers: 61-74
Published: 2024-07-17
Digital Object Identifier: 10.58578/amjsai.v1i1.3370
Save this to:
Article Metrics:
Viewed : 13 times
Downloaded : 9 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • E. A. Kamba Federal University Wukari, Taraba State, Nigeria
  • E. B Attah Daniel Federal University Wukari, Taraba State, Nigeria

Abstract

As the world faces the increasing energy demands of its growing population a number of novel and renewable energy sources are being investigated as replacement agents for conventional fossil fuel species. In this study SiO2/TiO2 core–shell nanofibres were synthesised and characterised using facile experimental procedures. The synthesized catalyst was utilized for photodecomposition of hexamethyldisiloxane (HMS) in biogas. The results obtained revealed that by the decomposition properties of the created material it was possible to establish a photocatalyst equipped with properties capable of decomposing siloxanes in biogas with high efficiency.

Keywords: Photogradation; Photocatalyst; Siloxanes; Titaniumdioxide; Nanofibres
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Kamba, E. A., & Daniel, E. B. A. (2024). Synthesis of SiO2/TiO2 Core – Shell Nanofibres for Photodegradation of Hexamethyldisiloxane. African Multidisciplinary Journal of Sciences and Artificial Intelligence, 1(1), 61-74. https://doi.org/10.58578/amjsai.v1i1.3370

References

[1] E. A. Gorrepati, P. Wongthahan, S. Raha and H. S. Fogler (2010), Silica precipitations in acidic solutionsmechnism, pH effects and salt effect. Langmuir, 26, 10467–74.
[2] J. L. Gurav, A. V. Rao, A. P. Rao, D. Nadargi and S. Bhagat (2009), Physical properties of sodium silicate based silica aerogels prepared by single step sol-gel process dried at ambient pressure J. Alloys Compd.,476, 397–402.
[3] S. H. Garofalini and G. Martin, (1994), Sol-gel polymerization: analysis of molecular mechanisms and the effect of hydrogen J. Phys. Chem., 98, 1311–1316.
[4] G. R. Choppin, P. Pathak and P. Thakur, (2008), polymerization and complexation behaviuor of silicic acid. Main Gr. Met. Chem., 31, 53–71.
[5] R. Deshpande, D.-W. Hua, D. M. Smith and C. J. Brinker,(1992), Pore structure evolution in silica gel during aging/dryingJ. Non. Cryst. Solids, 144, 32–44.
[6] P. J. Davis, C. Jeffrey Brinker, D. M. Smith and R. A. Assink, (1994), Pore structure evolution in silica gel during aging/drying. IV. Varying pore fluid pH J. Non. Cryst. Solids, 142, 197–207.
[7] R.K Bordia and G. W. Scherer,(1988), On constrained sintering—I. Constitutive model for a sintering body Acta Metallurgica, 36, (9) 2393–2397.
[8] J. Fan, R. Zamani, C. Fábrega, A. Shavel, C. Flox, M. Ibáñez, T. Andreu, A. M López, J. Arbiol, J. R. Morante (2012) Solution-growth and optoelectronic performance of ZnO : Cl/TiO2 and ZnO : Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness 2012 J. Phys. D: Appl. Phys. 45 415301
[9] S. D. Bhagat, Y.-H. Kim, Y.-S. Ahn and J.-G. Yeo,(2006), Textural properties of ambient pressure dried water-glass based silica aerogel beads: One day synthesis Microporous Mesoporous Mater, 96, (1-3) 237–244.
[10] J. V. Alemán, A. V. Chadwick, J. He, M. Hess, et al., ,(2007), Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007) Pure Appl. Chem., 79, 1801–1829.
[11] D. R. Ortega and A. Subrenat,(2009), Siloxane treatment by adsorption into porous materials Environ. Technol., 30, 1073–1083.
[12] M. C. Canela, R. M. Alberici and W. F. Jardim,(1998), Gas-phase destruction of H2S using TiO2/UV-Vis J. Photochem. Photobiol. A Chem., 112, 73–80.
[13] S. H. Lim, N. Phonthammachai, S. S. Pramana, and T. J. White (2008) Simple Route to Monodispersed Silica−Titania Core−Shell Photocatalysts Langmuir 24 (12), 6226-6231
[14] S.O Hay, T.N Obee, C. Thibaud-Erkey (2010) The deactivation of photocatalytic based air purifiers by ambient siloxanes United States Environmental Protection Agency 99 (3-4); pp 435-441
[15] K. Karthik, S. K. Pandian and N. V. Jaya,(2010), Effect of nickel doping on structural, optical and electrical properties of TiO2 nanoparticles by sol–gel method Appl. Surf. Sci., 256, 6829–6833.
[16] M. Bellardita, M. Addamo, A. Di Paola and L. Palmisano,(2007), Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films Chem. Phys., 339, 94–103.
[17] X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao and Q. Chen,(2012), Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion Mater. Lett., 66, 370–373.
[18] A. Ivask, T. Titma, M. Visnapuu, H. Vija, et al.,(2015), Toxicity of 11 Metal Oxide Nanoparticles to Three Mammalian Cell Types In Vitro Curr. Top. Med. Chem., 15, 1914–29.
[19] J. H. Park, O. O. Park and S. Kim,(2006), Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide Appl. Phys. Lett., 89, 163106.
[20] T. Putta, M.-C. Lu and J. Anotai,(2011), Photocatalytic activity of tungsten-doped TiO2 with hydrothermal treatment under blue light irradiation J. Environ. Manage., 92, 2272–2276.
[21] O. Lorret, D. Francová, G. Waldner and N. Stelzer,(2009) W-doped titania nanoparticles for UV and visible-light photocatalytic reactions Appl. Catal. B Environ., 91, 39–46.
[22] H. Song, H. Jiang, X. Liu and G. Meng,(2006), Efficient degradation of organic pollutant with WOx modified nano TiO2 under visible irradiation J. Photochem. Photobiol. A Chem., 181, 421–428.
[23] H. Aizawa and S. Tsuneyuki,(1996), First-principles investigation of photo-induced desorption of CO and NO from Pt(111) Surf. Sci., 363, 223–228.