Damping Factors in the Interpretation of Geoelectric Data (Case Study: Malalak Agam Rock Structure)

Page Numbers: 141-159
Digital Object Identifier: 10.58578/alsystech.v2i2.3082
Save this to:
Article Metrics:
Viewed : 85 times
Downloaded : 24 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)

Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.

  • Ayu Ashari Sembiring Universitas Negeri Padang
  • Akmam Akmam Universitas Negeri Padang


This research aims to optimize the damping factor so that the results of Geoelectric data inversion are stable and in accordance with current geological conditions in Malalak Agam. This type of research is a descriptive research using secondary data in the form of pseudo-type resistance data and electrode spacing obtained from research in the field of Geoelectric exploration in the Department of Physics at Padang State University (UNP). This data is obtained from Geoelectric secondary data and location supporting data. The geoelectric data processing stage is carried out using Res2dinv software which is used to model in 2-D using least-square inversion. The results showed that based on the interpretation of the data, the suitable damping factors in Malalak Agam District, West Sumatra, were the initial damping factor (0.2 – 0.25) and the minimum damping factor (0.01 – 0.1) because on trajectory 2 At the third measurement point 160 meters from point 0 was dominated by limestone and sandstone rocks. The existence of Limestone acts as a slip field, and there is Sandstone right above it which causes large-scale landslides from the first to fifth measurement points (315-160 meters from point 0) and on trajectory 3 at this time there is a landslide with a small volume, it is estimated that the avalanche is at the second measurement point 120 meters from point 0 with an avalanche thickness ranging from approximately 5 meters.

Keywords: Damping Factors; Geoelectric; Res2dinv; Inverse

Citation Metrics:


Download data is not yet available.
How to Cite
Sembiring, A. A., & Akmam, A. (2024). Damping Factors in the Interpretation of Geoelectric Data (Case Study: Malalak Agam Rock Structure). ALSYSTECH Journal of Education Technology, 2(2), 141-159. https://doi.org/10.58578/alsystech.v2i2.3082


Akmam, A. (2018). Analisis Struktur Batuan Dengan Metoda Inversi Smoothness-Constrained Least-Squares Data Geolistrik Konfigurasi Schlumberger Di Universitas Negeri Padang Kampus Air Tawar. Https://Doi.Org/10.31227/Osf.Io/D82as
Argobi, M. R. (T.T.). Identifikasi Lapisan Batuan Daerah Rawan Longsor Dengan Metode Geolistrik Konfigurasi Wenner-Schlumberger Di Desa Sagalaherang Kaler Kabupaten Subang Jawa Barat.
Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., & Slater, L. D. (2015). The Emergence Of Hydrogeophysics For Improved Understanding Of Subsurface Processes Over Multiple Scales. Water Resources Research, 51(6), 3837–3866. Https://Doi.Org/10.1002/2015wr017016
Gallardo, L. A., & Meju, M. A. (2011). Structure‐Coupled Multiphysics Imaging In Geophysical Sciences. Reviews Of Geophysics, 49(1), 2010rg000330. Https://Doi.Org/10.1029/2010rg000330
Gupta, P. K., Niwas, S., & Gaur, V. K. (1997). Straightforward Inversion Of Vertical Electrical Sounding Data. Geophysics, 62(3), 775–785. Https://Doi.Org/10.1190/1.1444187
Hansen, P. C. (2010). Discrete Inverse Problems: Insight And Algorithms. Society For Industrial And Applied Mathematics.
J. (2013). Effects Of Electrode Spacing And Inversion Techniques On The Efficacy Of 2d Resistivity Imaging To Delineate Subsurface Features. American Journal Of Applied Sciences, 10(1), 64–72. Https://Doi.Org/10.3844/Ajassp.2013.64.72
Jamaluddin, & Umar, E. P. (2018). Identification Of Subsurface Layer With Wenner-Schlumberger Arrays Configuration Geoelectrical Method. Iop Conference Series: Earth And Environmental Science, 118, 012006. Https://Doi.Org/10.1088/1755-1315/118/1/012006
Lestari, H., Nasri, M., Zulkifli, A., Aswad, S., & Syamsuddin. (2019). Interpretation Of One Dimensional Schlumberger Curve Resistivity Data Using “Least Square” Inversion. Iop Conference Series: Earth And Environmental Science, 279(1), 012042. Https://Doi.Org/10.1088/1755-1315/279/1/012042
Melani, O., Fara, T. A., Anjelika, L., Safitri, D. E., Wibowo, R. C., & Zaelani, A. (2021). Penerapan Metode Inversi Dalam Pendugaan Nilai Resistivitas. Teknika Sains: Jurnal Ilmu Teknik, 6(2), 91–101. Https://Doi.Org/10.24967/Teksis.V6i2.1413
Mulia, I. E., Gusman, A. R., Jakir Hossen, M., & Satake, K. (2018). Adaptive Tsunami Source Inversion Using Optimizations And The Reciprocity Principle. Journal Of Geophysical Research: Solid Earth, 123(12). Https://Doi.Org/10.1029/2018jb016439
Okechukwu, E., & Abanum, B. C. (2020). Lithostratigraphic Characterizationof The Subsurface In Ologbo Community Using Wenner-Schlumberger Electrode Configuration Of Electrical Resistivity Method. International Journal Of Advances In Scientific Research And Engineering, 06(06), 46–56. Https://Doi.Org/10.31695/Ijasre.2020.33830
Olubusola, I., Daniel, A., & Oladimeji, O. (2018). Modeling Of Groundwater Yield Using Gis And Electrical Resistivity Method In A Basement Complex Terrain, Southwestern Nigeria. Journal Of Geography, Environment And Earth Science International, 16(1), 1–17. Https://Doi.Org/10.9734/Jgeesi/2018/42102
Pasa’bi, O. (2021). Pemodelan Dua Dimensi Data Direct Current Resistivity (Dcr) Konfigurasi Wenner-Schlumberger Menggunakan Inversi Least Square.
Permana, R. S., Buana, A. P., Akmam, A., Amir, H., & Putra, A. (2020). Using The Schlumberger Configuration Resistivity Geoelectric Method To Estimate The Rock Structure At Landslide Zone In Malalak Agam. Journal Of Physics: Conference Series, 1481(1), 012034. Https://Doi.Org/10.1088/1742-6596/1481/1/012034
Pimienta, L., Orellana, L. F., & Violay, M. (2019). Variations In Elastic And Electrical Properties Of Crustal Rocks With Varying Degree Of Microfracturation. Journal Of Geophysical Research: Solid Earth, 124(7), 6376–6396. Https://Doi.Org/10.1029/2019jb017339
Rahmani, T. R., Sari, D. P., Akmam, A., Amir, H., & Putra, A. (2020). Using The Schlumberger Configuration Resistivity Geoelectric Method To Analyze The Characteristics Of Slip Surface At Solok. Journal Of Physics: Conference Series, 1481(1), 012030. Https://Doi.Org/10.1088/1742-6596/1481/1/012030
Rolia, E., & Sutjiningsih, D. (2018). Application Of Geoelectric Method For Groundwater Exploration From Surface (A Literature Study). 020018. Https://Doi.Org/10.1063/1.5042874
Sapulete, S. M., Souisa, M., & Jubaedah, S. (2019). Interpretasi Data Resistivitas Untuk Mengidentifikasi Munculnya Longsor Susulan Di Blok V Wayame Ambon. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 13(3), 185–196. Https://Doi.Org/10.30598/Barekengvol13iss3pp185-196ar926
Sari, W. P. (2018). Analisis Struktur Batuan Berdasarkan Data Geolistrik Tahanan Jenis Konfigurasi Schlumberger Dan Konfigurasi Dipole-Dipole Di Kecamatan Malalak Kabupaten Agam. 11(2).
Sheishah, D., Sipos, G., Hegyi, A., Kozák, P., Abdelsamei, E., Tóth, C., Onaca, A., & Páll, D. (2022). Assessing The Structure And Composition Of Artificial Levees Along The Lower Tisza River (Hungary). Geographica Pannonica, 26(3), 258–272. Https://Doi.Org/10.5937/Gp26-39474