Ferroptosis and Cancer Therapy Review

Page Numbers: 510-545
Published: 2024-07-31
Digital Object Identifier: 10.58578/kijst.v1i1.3687
Save this to:
Article Metrics:
Viewed : 25 times
Downloaded : 10 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • James Agbu Sunday Federal University Wukari, Taraba State, Nigeria
  • Otitujo Olawale Federal University Wukari, Taraba State, Nigeria
  • Isaac John Umaru Federal University Wukari, Taraba State, Nigeria
  • Maianguwa Abdulrsashid Dauda Federal University Wukari, Taraba State, Nigeria

Abstract

Ferroptosis is a type of intracellular iron-dependent cell death that is different from autophagy, necrosis, and apoptosis. Ferroptosis is necessary for tumour suppression, according to a number of studies, which opens up new therapy options for cancer. The establishment of resistance to cancer therapy is one of the most significant ongoing challenges. The subject of conquering drug resistance has been the focus of numerous preclinical and clinical studies. Interestingly, ferroptosis has been associated with treatment resistance for cancer, and ferroptosis stimulation has been demonstrated to reverse drug resistance. The current knowledge of ferroptosis-inducing and ferroptosis defence mechanisms analyses the functions and mechanisms of ferroptosis in tumour immunity and tumour suppression, conceptualises the various ways that cancer cells are vulnerable to ferroptosis, and investigates therapeutic approaches for ferroptosis targeting in cancer. Cancer is one of the most terrible illnesses that can kill a person worldwide. There are several ways to treat cancer, including surgery, chemotherapy, and radiation. Analysis of the sensitivity of cancer cells to ferroptosis, which is impacted by their elevated reactive oxygen species levels and particular mutation profiles, opens up new possibilities for improving the efficacy of already used cancer treatments. This review included the state of knowledge about the induction and defence mechanisms of ferroptosis, the function and mechanisms of ferroptosis in tumor suppression, and treatment approaches for tumor-induced ferroptosis.

Keywords: Ferroptosis; Cancer; Therapy; Tumor; Iron-dependent
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Sunday, J. A., Olawale, O., Umaru, I. J., & Dauda, M. A. (2024). Ferroptosis and Cancer Therapy Review. Kwaghe International Journal of Sciences and Technology, 1(1), 510-545. https://doi.org/10.58578/kijst.v1i1.3687

References

Alvarez, S. W., Sviderskiy, V. O., Terzi, E. M., Papagiannakopoulos, T., Moreira, A. L., Adams, S., Sabatini, D. M., Birsoy, K., and Possemato, R. (2017). NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature, 551(7682), 639–643. https://doi.org/10.1038/nature24637
Bauer A. J., Gieschler S., Lemberg K. M., McDermott A. E. and Stockwell B. R. (2011). Functional model of metabolite gating by human voltage-dependent anion channel 2. Biochemistry; 50: 3408–3410.
Canli, Ö., Alankuş, Y. B., Grootjans, S., Vegi, N., Hültner, L., Hoppe, P. S., Schroeder, T., Vandenabeele, P., Bornkamm, G. W., and Greten, F. R. (2016). Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood, 127(1), 139–148. https://doi.org/10.1182/blood-2015-06-654194
Canli, Ö., Nicolas, A. M., Gupta, J., Finkelmeier, F., Goncharova, O., Pesic, M., Neumann, T., Horst, D., Löwer, M., Sahin, U., and Greten, F. R. (2017). Myeloid Cell-Derived Reactive Oxygen Species Induce Epithelial Mutagenesis. Cancer cell, 32(6), 869–883.e5. https://doi.org/10.1016/j.ccell.2017.11.004
Chang, L. C., Chiang, S. K., Chen, S. E., Yu, Y. L., Chou, R. H., and Chang, W. C. (2018). Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer letters, 416, 124–137. https://doi.org/10.1016/j.canlet.2017.12.025
Cheah, J. H., Kim, S. F., Hester, L. D., Clancy, K. W., Patterson, S. E., Papadopoulos, V., and Snyder, S. H. (2006). NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron, 51(4), 431–440. https://doi.org/10.1016/j.neuron.2006.07.011
Chen, D., Tavana, O., Chu, B., Erber, L., Chen, Y., Baer, R., and Gu, W. (2017). NRF2 Is a Major Target of ARF in p53-Independent Tumor Suppression. Molecular cell, 68(1), 224–232.e4. https://doi.org/10.1016/j.molcel.2017.09.009
Chen, L., Hambright, W. S., Na, R., and Ran, Q. (2015). Ablation of the Ferroptosis Inhibitor Glutathione Peroxidase 4 in Neurons Results in Rapid Motor Neuron Degeneration and Paralysis. The Journal of Biological Chemistry, 290(47), 28097–28106. https://doi.org/10.1074/jbc.M115.680090
Chen, P., Li, X., Zhang, R., Liu, S., Xiang, Y., Zhang, M., Chen, X., Pan, T., Yan, L., Feng, J., Duan, T., Wang, D., Chen, B., Jin, T., Wang, W., Chen, L., Huang, X., Zhang, W., Sun, Y., Li, G., and Xie, T. (2020). Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics, 10(11), 5107–5119. https://doi.org/10.7150/thno.44705
Chen, X., Yu, C., Kang, R., and Tang, D. (2020). Iron Metabolism in Ferroptosis. Frontiers in cell and developmental biology, 8, 590226. https://doi.org/10.3389/fcell.2020.590226
Corrales, L., McWhirter, S. M., Dubensky, T. W., Jr, and Gajewski, T. F. (2016). The host STING pathway at the interface of cancer and immunity. The Journal of clinical investigation, 126(7), 2404–2411. https://doi.org/10.1172/JCI86892
Dai, E., Han, L., Liu, J., Xie, Y., Kroemer, G., Klionsky, D. J., Zeh, H. J., Kang, R., Wang, J., and Tang, D. (2020) Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy 16, 2069–2083
Dai, E., Han, L., Liu, J., Xie, Y., Zeh, H. J., Kang, R., Bai, L., and Tang, D. (2020). Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nature communications, 11(1), 6339. https://doi.org/10.1038/s41467-020-20154-8
De Souza, I., Monteiro, L. K. S., Guedes, C. B., Silva, M. M., Andrade-Tomaz, M., Contieri, B., Latancia, M. T., Mendes, D., Porchia, B. F. M. M., Lazarini, M., Gomes, L. R., and Rocha, C. R. R. (2022). High levels of NRF2 sensitize temozolomide-resistant glioblastoma cells to ferroptosis via ABCC1/MRP1 upregulation. Cell death & disease, 13(7), 591. https://doi.org/10.1038/s41419-022-05044-9
Dixon, S. J., and Stockwell, B. R. (2014). The role of iron and reactive oxygen species in cell death. Nature Chemical Biology, 10(1), 9–17. https://doi.org/10.1038/nchembio.1416
Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., and Stockwell, B. R. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042
Doll, S., Proneth, B., Tyurina, Y. Y., Panzilius, E., Kobayashi, S., Ingold, I., Irmler, M., Beckers, J., Aichler, M., Walch, A., Prokisch, H., Trümbach, D., Mao, G., Qu, F., Bayir, H., Füllekrug, J., Scheel, C. H., Wurst, W., Schick, J. A., Kagan, V. E., and Conrad, M. (2017). ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature chemical biology, 13(1), 91–98. https://doi.org/10.1038/nchembio.2239
Dröge W. (2002). Free radicals in the physiological control of cell function. Physiological reviews, 82(1), 47–95. https://doi.org/10.1152/physrev.00018.2001
Elgendy, S. M., Alyammahi, S. K., Alhamad, D. W., Abdin, S. M., and Omar, H. A. (2020). Ferroptosis: An emerging approach for targeting cancer stem cells and drug resistance. Critical reviews in oncology/hematology, 155, 103095. https://doi.org/10.1016/j.critrevonc.2020.103095
Eling, N., Reuter, L., Hazin, J., Hamacher-Brady, A., & Brady, N. R. (2015). Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience, 2(5), 517–532. https://doi.org/10.18632/oncoscience.160
Friedmann Angeli, J. P., Schneider, M., Proneth, B., Tyurina, Y. Y., Tyurin, V. A., Hammond, V. J., Herbach, N., Aichler, M., Walch, A., Eggenhofer, E., Basavarajappa, D., Rådmark, O., Kobayashi, S., Seibt, T., Beck, H., Neff, F., Esposito, I., Wanke, R., Förster, H., Yefremova, O., and Conrad, M. (2014). Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology, 16(12), 1180–1191. https://doi.org/10.1038/ncb3064
Gao, M., Monian, P., Quadri, N., Ramasamy, R., and Jiang, X. (2015). Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular cell, 59(2), 298–308. https://doi.org/10.1016/j.molcel.2015.06.011
Gao, M., Yi, J., Zhu, J., Minikes, A. M., Monian, P., Thompson, C. B., and Jiang, X. (2019). Role of Mitochondria in Ferroptosis. Molecular cell, 73(2), 354–363.e3. https://doi.org/10.1016/j.molcel.2018.10.042
Gnanapradeepan, K., Basu, S., Barnoud, T., Budina-Kolomets, A., Kung, C. P., and Murphy, M. E. (2018). The p53 Tumor Suppressor in the Control of Metabolism and Ferroptosis. Frontiers in Endocrinology, 9, 124. https://doi.org/10.3389/fendo.2018.00124
Hassannia B, Vandenabeele P, Vanden BT. Targeting ferroptosis to iron out cancer. Cancer Cell. 2019;35(6):830–49.
Hong, T., Lei, G., Chen, X., Li, H., Zhang, X., Wu, N., Zhao, Y., Zhang, Y., & Wang, J. (2021). PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox biology, 42, 101928. https://doi.org/10.1016/j.redox.2021.101928
Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M. T., Zeh, H. J., 3rd, Kang, R., and Tang, D. (2016). Autophagy promotes ferroptosis by degradation of ferritin. Autophagy, 12(8), 1425–1428. https://doi.org/10.1080/15548627.2016.1187366
Jiang, M., Qiao, M., Zhao, C., Deng, J., Li, X., & Zhou, C. (2020). Targeting ferroptosis for cancer therapy: exploring novel strategies from its mechanisms and role in cancers. Translational lung cancer research, 9(4), 1569–1584. https://doi.org/10.21037/tlcr-20-341
Jiang, Z., Lim, S. O., Yan, M., Hsu, J. L., Yao, J., Wei, Y., Chang, S. S., Yamaguchi, H., Lee, H. H., Ke, B., Hsu, J. M., Chan, L. C., Hortobagyi, G. N., Yang, L., Lin, C., Yu, D., and Hung, M. C. (2021). TYRO3 induces anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. The Journal of clinical investigation, 131(8), e139434. https://doi.org/10.1172/JCI139434
Kagan, V. E., Mao, G., Qu, F., Angeli, J. P., Doll, S., Croix, C. S., Dar, H. H., Liu, B., Tyurin, V. A., Ritov, V. B., Kapralov, A. A., Amoscato, A. A., Jiang, J., Anthonymuthu, T., Mohammadyani, D., Yang, Q., Proneth, B., Klein-Seetharaman, J., Watkins, S., Bahar, I. and Bayır, H. (2017). Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 13(1), 81–90. https://doi.org/10.1038/nchembio.2238
Kapralov, A. A., Yang, Q., Dar, H. H., Tyurina, Y. Y., Anthonymuthu, T. S., Kim, R., St Croix, C. M., Mikulska-Ruminska, K., Liu, B., Shrivastava, I. H., Tyurin, V. A., Ting, H. C., Wu, Y. L., Gao, Y., Shurin, G. V., Artyukhova, M. A., Ponomareva, L. A., Timashev, P. S., Domingues, R. M., Stoyanovsky, D. A. and Kagan, V. E. (2020). Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nature Chemical Biology, 16(3), 278–290. https://doi.org/10.1038/s41589-019-0462-8
Kwon, M. Y., Park, E., Lee, S. J., and Chung, S. W. (2015). Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget, 6(27), 24393–24403. https://doi.org/10.18632/oncotarget.5162
Lee, H., Zandkarimi, F., Zhang, Y., Meena, J. K., Kim, J., Zhuang, L., Tyagi, S., Ma, L., Westbrook, T. F., Steinberg, G. R., Nakada, D., Stockwell, B. R., and Gan, B. (2020). Energy-stress-mediated AMPK activation inhibits ferroptosis. Nature Cell Biology, 22(2), 225–234. https://doi.org/10.1038/s41556-020-0461-8
Li, D., and Li, Y. (2020). The interaction between ferroptosis and lipid metabolism in cancer. Signal transduction and targeted Therapy, 5(1), 108. https://doi.org/10.1038/s41392-020-00216-5
Li, D., Wang, Y., Dong, C., Chen, T., Dong, A., Ren, J., Li, W., Shu, G., Yang, J., Shen, W., Qin, L., Hu, L., and Zhou, J. (2023). CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1. Oncogene, 42(2), 83–98. https://doi.org/10.1038/s41388-022-02537-x
Li, L., Ng, S. R., Colón, C. I., Drapkin, B. J., Hsu, P. P., Li, Z., Nabel, C. S., Lewis, C. A., Romero, R., Mercer, K. L., Bhutkar, A., Phat, S., Myers, D. T., Muzumdar, M. D., Westcott, P. M. K., Beytagh, M. C., Farago, A. F., Vander Heiden, M. G., Dyson, N. J., and Jacks, T. (2019). Identification of DHODH as a therapeutic target in small cell lung cancer. Science Translational Medicine, 11(517), eaaw7852. https://doi.org/10.1126/scitranslmed.aaw7852
Linkermann, A., Skouta, R., Himmerkus, N., Mulay, S. R., Dewitz, C., De Zen, F., Prokai, A., Zuchtriegel, G., Krombach, F., Welz, P. S., Weinlich, R., Vanden Berghe, T., Vandenabeele, P., Pasparakis, M., Bleich, M., Weinberg, J. M., Reichel, C. A., Bräsen, J. H., Kunzendorf, U., Anders, H. J., and Krautwald, S. (2014). Synchronized renal tubular cell death involves ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 111(47), 16836–16841. https://doi.org/10.1073/pnas.1415518111
Liu, M. Y., Li, H. M., Wang, X. Y., Xia, R., Li, X., Ma, Y. J., Wang, M., and Zhang, H. S. (2022). TIGAR drives colorectal cancer ferroptosis resistance through ROS/AMPK/SCD1 pathway. Free Radical Biology and Medicine, 182, 219–231. https://doi.org/10.1016/j.freeradbiomed.2022.03.002
Liu, Y., & Gu, W. (2022). p53 in ferroptosis regulation: the new weapon for the old guardian. Cell death and differentiation, 29(5), 895–910. https://doi.org/10.1038/s41418-022-00943-y
Ma, X. H., Liu, J. H., Liu, C. Y., Sun, W. Y., Duan, W. J., Wang, G., Kurihara, H., He, R. R., Li, Y. F., Chen, Y., and Shang, H. (2022). ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal Transduction and Targeted Therapy, 7(1), 288. https://doi.org/10.1038/s41392-022-01090-z
Maldonado, E. N., Sheldon, K. L., DeHart, D. N., Patnaik, J., Manevich, Y., Townsend, D. M., Bezrukov, S. M., Rostovtseva, T. K., and Lemasters, J. J. (2013). Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin. The Journal of Biological Chemistry, 288(17), 11920–11929. https://doi.org/10.1074/jbc.M112.433847
Manz, D. H., Blanchette, N. L., Paul, B. T., Torti, F. M., and Torti, S. V. (2016). Iron and cancer: recent insights. Annals of the New York Academy of Sciences, 1368(1), 149–161. https://doi.org/10.1111/nyas.13008
Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., Lee, H., Koppula, P., Wu, S., Zhuang, L., Fang, B., Poyurovsky, M. V., Olszewski, K., and Gan, B. (2021). DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature, 593(7860), 586–590. https://doi.org/10.1038/s41586-021-03539-7
Matsushita, M., Freigang, S., Schneider, C., Conrad, M., Bornkamm, G. W., and Kopf, M. (2015). T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. The Journal of Experimental Medicine, 212(4), 555–568. https://doi.org/10.1084/jem.20140857
Miao, Y., Chen, Y., Xue, F., Liu, K., Zhu, B., Gao, J., Yin, J., Zhang, C., and Li, G. (2022). Contribution of ferroptosis and GPX4's dual functions to osteoarthritis progression. EBioMedicine, 76, 103847. https://doi.org/10.1016/j.ebiom.2022.103847
Oweida, A., Hararah, M. K., Phan, A., Binder, D., Bhatia, S., Lennon, S., Bukkapatnam, S., Van Court, B., Uyanga, N., Darragh, L., Kim, H. M., Raben, D., Tan, A. C., Heasley, L., Clambey, E., Nemenoff, R., and Karam, S. D. (2018). Resistance to Radiotherapy and PD-L1 Blockade Is Mediated by TIM-3 Upregulation and Regulatory T-Cell Infiltration. Clinical cancer research: An Official Journal of the American Association for Cancer Research, 24(21), 5368–5380. https://doi.org/10.1158/1078-0432.CCR-18-1038
Polewski, M. D., Reveron-Thornton, R. F., Cherryholmes, G. A., Marinov, G. K., Cassady, K., and Aboody, K. S. (2016). Increased Expression of System xc- in Glioblastoma Confers an Altered Metabolic State and Temozolomide Resistance. Molecular Cancer Research: MCR, 14(12), 1229–1242. https://doi.org/10.1158/1541-7786.MCR-16-0028
Quezada, S. A., Peggs, K. S., Curran, M. A., and Allison, J. P. (2006). CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. The Journal of Clinical Investigation, 116(7), 1935–1945. https://doi.org/10.1172/JCI27745
Reina, S., and De Pinto, V. (2017). Anti-Cancer Compounds Targeted to VDAC: Potential and Perspectives. Current Medicinal Chemistry, 24(40), 4447–4469. https://doi.org/10.2174/0929867324666170530074039
Richardson, D. R., and Ponka, P. (1997). The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochimica et biophysica acta, 1331(1), 1–40. https://doi.org/10.1016/s0304-4157(96)00014-7
Rochette, L., Dogon, G., Rigal, E., Zeller, M., Cottin, Y., and Vergely, C. (2022). Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. International Journal of Molecular Sciences, 24(1), 449. https://doi.org/10.3390/ijms24010449
Schott, C., Graab, U., Cuvelier, N., Hahn, H., and Fulda, S. (2015). Oncogenic RAS Mutants Confer Resistance of RMS13 Rhabdomyosarcoma Cells to Oxidative Stress-Induced Ferroptotic Cell Death. Frontiers in Oncology, 5, 131. https://doi.org/10.3389/fonc.2015.00131
Seibt T. M., Proneth B. and Conrad M. (2019). Role of GPX4 in ferroptosis and its pharmacological implication. Free Radical Biological Medical. 133:144–152. doi:10.1016/j.freeradbiomed.2018.09.014
Sharma, P., Hu-Lieskovan, S., Wargo, J. A., and Ribas, A. (2017). Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 168(4), 707–723. https://doi.org/10.1016/j.cell.2017.01.017
Shiromizu S., Yamauchi T., Kusunose N., Matsunaga N., Koyanagi S. and Ohdo S. (2019). Dosing time- dependent changes in the anti-tumor effect of xCT inhibitor erastin in human breast cancer xenograft mice. Biological Pharmaceutical Bulletin 42(11):1921–1925. doi:10.1248/bpb.b19-00546
Skouta, R., Dixon, S. J., Wang, J., Dunn, D. E., Orman, M., Shimada, K., Rosenberg, P. A., Lo, D. C., Weinberg, J. M., Linkermann, A., and Stockwell, B. R. (2014). Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. Journal of the American Chemical Society, 136(12), 4551–4556. https://doi.org/10.1021/ja411006a
Song, X., Wang, X., Liu, Z., and Yu, Z. (2020). Role of GPX4-Mediated Ferroptosis in the Sensitivity of Triple Negative Breast Cancer Cells to Gefitinib. Frontiers in Oncology, 10, 597434. https://doi.org/10.3389/fonc.2020.597434
Stockwell, B. R., Friedmann Angeli, J. P., Bayir, H., Bush, A. I., Conrad, M., Dixon, S. J., Fulda, S., Gascón, S., Hatzios, S. K., Kagan, V. E., Noel, K., Jiang, X., Linkermann, A., Murphy, M. E., Overholtzer, M., Oyagi, A., Pagnussat, G. C., Park, J., Ran, Q., Rosenfeld, C. S., and Zhang, D. D. (2017). Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171(2), 273–285. https://doi.org/10.1016/j.cell.2017.09.021
Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R., and Tang, D. (2016). Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology (Baltimore, Md.), 63(1), 173–184. https://doi.org/10.1002/hep.28251
Sun, X., Ou, Z., Xie, M., Kang, R., Fan, Y., Niu, X., Wang, H., Cao, L., and Tang, D. (2015). HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene, 34(45), 5617–5625. https://doi.org/10.1038/onc.2015.32
Sun, X., Sun, P., Zhen, D., Xu, X., Yang, L., Fu, D., Wei, C., Niu, X., Tian, J., and Li, H. (2022). Melatonin alleviates doxorubicin-induced mitochondrial oxidative damage and ferroptosis in cardiomyocytes by regulating YAP expression. Toxicology and Applied Pharmacology, 437, 115902. https://doi.org/10.1016/j.taap.2022.115902
Ubellacker, J. M., Tasdogan, A., Ramesh, V., Shen, B., Mitchell, E. C., Martin-Sandoval, M. S., Gu, Z., McCormick, M. L., Durham, A. B., Spitz, D. R., Zhao, Z., Mathews, T. P., and Morrison, S. J. (2020). Lymph protects metastasizing melanoma cells from ferroptosis. Nature, 585(7823), 113–118. https://doi.org/10.1038/s41586-020-2623-z
Wang, X., Chen, X., Zhou, W., Men, H., Bao, T., Sun, Y., Wang, Q., Tan, Y., Keller, B. B., Tong, Q., Zheng, Y., and Cai, L. (2022). Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta pharmaceutica Sinica. B, 12(2), 708–722. https://doi.org/10.1016/j.apsb.2021.10.005
Wang, Y., Zheng, L., Shang, W., Yang, Z., Li, T., Liu, F., Shao, W., Lv, L., Chai, L., Qu, L., Xu, Q., Du, J., Liang, X., Zeng, J., and Jia, J. (2022). Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death and Differentiation, 29(11), 2190–2202. https://doi.org/10.1038/s41418-022-01008-w
Wenzel, S. E., Tyurina, Y. Y., Zhao, J., St Croix, C. M., Dar, H. H., Mao, G., Tyurin, V. A., Anthonymuthu, T. S., Kapralov, A. A., Amoscato, A. A., Mikulska-Ruminska, K., Shrivastava, I. H., Kenny, E. M., Yang, Q., Rosenbaum, J. C., Sparvero, L. J., Emlet, D. R., Wen, X., Minami, Y., Qu, F. and Kagan, V. E. (2017). PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell, 171(3), 628–641.e26. https://doi.org/10.1016/j.cell.2017.09.044
Winterbourn C. C. (1995). Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology Letter. ;82-83:969–74.
Xu, C., Sun, S., Johnson, T., Qi, R., Zhang, S., Zhang, J., and Yang, K. (2021). The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell reports, 35(11), 109235. https://doi.org/10.1016/j.celrep.2021.109235.
Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A. J., Yang, W. S., Fridman, D. J., Wolpaw, A. J., Smukste, I., Peltier, J. M., Boniface, J. J., Smith, R., Lessnick, S. L., Sahasrabudhe, S., and Stockwell, B. R. (2007). RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 447(7146), 864–868. https://doi.org/10.1038/nature05859
Yang W. S. and Stockwell B. R. (2008). Synthetic lethal screening identifies compounds activating iron- dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chemical Biology. 15:234–45.
Yang, J., Zhou, Y., Xie, S., Wang, J., Li, Z., Chen, L., Mao, M., Chen, C., Huang, A., Chen, Y., Zhang, X., Khan, N. U. H., Wang, L., and Zhou, J. (2021). Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. Journal of experimental & clinical cancer research : CR, 40(1), 206. https://doi.org/10.1186/s13046-021-02012-7
Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., Cheah, J. H., Clemons, P. A., Shamji, A. F., Clish, C. B., Brown, L. M., Girotti, A. W., Cornish, V. W., Schreiber, S. L., and Stockwell, B. R. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1-2), 317–331. https://doi.org/10.1016/j.cell.2013.12.010
Yee, P. P., Wei, Y., Kim, S. Y., Lu, T., Chih, S. Y., Lawson, C., Tang, M., Liu, Z., Anderson, B., Thamburaj, K., Young, M. M., Aregawi, D. G., Glantz, M. J., Zacharia, B. E. and Specht, C. S. (2020) Neutrophilinduced ferroptosis promotes tumor necrosis in glioblastoma progression. National. Community. 11, 5424
Yu, Y., Xie, Y., Cao, L., Yang, L., Yang, M., Lotze, M. T., Zeh, H. J., Kang, R., and Tang, D. (2015). The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Molecular and Cellular Oncology, 2(4), e1054549. https://doi.org/10.1080/23723556.2015.1054549
Yuan H., Li X., Zhang X., Kang R., Tang D. (2016). Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochemistry Biophysical Research Community 478(3):1338–43.
Zhu, Y., Knolhoff, B. L., Meyer, M. A., Nywening, T. M., West, B. L., Luo, J., Wang-Gillam, A., Goedegebuure, S. P., Linehan, D. C., and DeNardo, D. G. (2014). CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Research, 74(18), 5057–5069. https://doi.org/10.1158/0008-5472.CAN-13-3723

Most read articles by the same author(s)

<< < 1 2 3 4 5