Heavy Metal Pollution in Aquatic Ecosystems: A Review of Toxic Impacts and Remediation Strategies

Page Numbers: 416-427
Published: 2024-07-31
Digital Object Identifier: 10.58578/kijst.v1i1.3621
Save this to:
Article Metrics:
Viewed : 41 times
Downloaded : 28 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Musa Yahaya Abubakar Federal University Wukari, Taraba State, Nigeria
  • Kabiru Bashir Ahmad Federal University Wukari, Taraba State, Nigeria
  • Twan Sale Mathew Federal University Wukari, Taraba State, Nigeria
  • Ruslan Shamsudden Federal University Wukari, Taraba State, Nigeria
  • Haladu Mahmud Muhammad Federal University Wukari, Taraba State, Nigeria
  • Mohammed Haladu Federal University Wukari, Taraba State, Nigeria
  • Ansar Bilyaminu Adam Ahmad Bello University Zaria, Nigeria

Abstract

Heavy metals contamination in aquatic ecosystems is a critical environmental issue with far-reaching implications for ecological health and human safety, Heavy metal pollution in aquatic ecosystems is a pressing environmental concern, posing significant risks to aquatic life and human health. This review summarizes the toxic effects of heavy metals (HMs) on aquatic organisms, ecosystems, and human consumers. The study explores the sources, fate, and transport of HMs in aquatic environments, highlighting their bioaccumulation, biomagnification, and ecological impacts. Remediation strategies, including phytoextraction, bioaugmentation, and chemical treatment, are critically eval_uated. Emerging technologies, such as Nano remediation and bioremediation, offer promising solutions. The study showed heavy metal pollution in aquatic ecosystems is a significant environmental challenge that requires coordinated efforts from governments, industries, and communities to mitigate its impacts and protect water quality and aquatic life. By addressing the sources and effects of heavy metals in aquatic habitats, we can mitigate their impact on the environment and human health, ensuring the sustainability of these vital ecosystems.

Keywords: Heavy Metals; Aquatic Ecosystems; Toxicity; Remediation
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Abubakar, M. Y., Ahmad, K. B., Mathew, T. S., Shamsudden, R., Muhammad, H. M., Haladu, M., & Adam, A. B. (2024). Heavy Metal Pollution in Aquatic Ecosystems: A Review of Toxic Impacts and Remediation Strategies. Kwaghe International Journal of Sciences and Technology, 1(1), 416-427. https://doi.org/10.58578/kijst.v1i1.3621

References

Adam, A. B., Muhammad, J. A., & Kaugama, A. A (2023). Impact of heavy metals content found in irrigated red pepper in challawa industrial area. 5th internationalpalandoken scientific studies congress 18-19 march erzurum / turkey.
Ali, H., Khan, E., &Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075.
Alloway, B. J. (2013). Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability (Vol. 22). Springer Science & Business Media.
Clarkson, T. W., Magos, L., & Myers, G. J. (2003). The toxicology of mercury—Current exposures and clinical manifestations. New England Journal of Medicine, 349(18), 1731-1737. https://doi.org/10.1056/NEJMra022471.
Eggleton, J., & Thomas, K. V. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30(7), 973-980. https://doi.org/10.1016/j.envint.2004.03.001.
Fu et al. (2019). Sources and fate of heavy metals in aquatic environments. Environmental Science and Technology, 53(15), 8516-8525.
Ghosh, U., Luthy, R. G., Cornelissen, G., Werner, D., &Menzie, C. A. (2011). In-situ sorbent amendments: A new direction in contaminated sediment management. Environmental Science & Technology, 45(4), 1163-1168. https://doi.org/10.1021/es102694h.
Hudson-Edwards, K. A. (2003). Sources, geochemistry, and fate of heavy metal-bearing particles in mining-affected river systems. Mineralogical Magazine, 67(2), 205-217. https://doi.org/10.1180/0026461036720103.
Jezierska, B., &Witeska, M. (2006). The metal uptake and accumulation in fish living in polluted waters. Soil and Water Pollution Monitoring, Protection and Remediation, 3-23. https://doi.org/10.1007/978-1-4020-4728-2_1.
Kristensen, H.S.; Mosgaard, M.A. A Review of Micro Level Indicators for a Circular Economy—Moving Away from the Three Dimensions of Sustainability? J. Clean. Prod. 2020, 243, 118531.
Luoma, S. N., & Rainbow, P. S. (2008). Metal Contamination in Aquatic Environments: Science and Lateral Management. Cambridge University Press.
Makepeace, D. K., Smith, D. W., & Stanley, S. J. (1995). Urban stormwater quality: Summary of contaminant data. Critical Reviews in Environmental Science and Technology, 25(2), 93-139. https://doi.org/10.1080/10643389509388476.
Musa YahayaAbubakar, Aminu Ado Kaugama, Aasegh Torhile Japhet, Hyelalibiya Ataitiya, Kabiru Bashir Ahmad, Shamsu Abdullah Idris and AnsarBilyaminu Adam (2024): Effects, and Remediation of Heavy Metals Contamination in Soil and vegetables from different areas. Review .earth line journal of chemical sciences.
Nagajyoti, P. C., Lee, K. D., &Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199-216. https://doi.org/10.1007/s10311-010-0297-8.
Nriagu, J. O., &Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(6169), 134-139. https://doi.org/10.1038/333134a0.
Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: Why and so what? Environmental Pollution, 120(3), 497-507. https://doi.org/10.1016/S0269-7491(02)00238-5.
Sharma, N., Sodhi, K. K., Kumar, M., & Singh, D. K. (2021). Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation. Environmental Nanotechnology, Monitoring & Management, 15, 100388.
Storelli, M. M. (2008). Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food and Chemical Toxicology, 46(8), 2782-2788.
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology: volume 3: environmental toxicology, 133-164.
United States Environmental Protection Agency (EPA). (2020). Heavy Metals in Aquatic Ecosystems.
Wang et al. (2019). Bioaccumulation and biomagnification of heavy metals in aquatic organisms. Environmental Science and Technology, 53(19), 10515-10523.
World Health Organization (WHO). (2018). Guidelines for Drinking-water Quality.
National Strategy for the Sustainable Development of Romania—Horizons 2013–2020–2030. Available online: http://www.mmediu.ro/articol/program-operational-dezvoltare-durabila/3354.
Chaturvedi, P.; Shukla, P.; Giri, B.S.; Chowdhary, P.; Chandra, R.; Gupta, P.; Pandey. (2021). A. Preval_ence and Hazardous Impact of Pharmaceutical and Personal Care Products and Antibiotics in Environment: A Review on Emerging Contaminants. Environ. Res. 194, 110664.
Schwarz, S.; Gildemeister, D.; Hein, A.; Schröder, P.; Bachmann, J. (2021). Environmental fate and effects assessment of human pharmaceuticals: Lessons learnt from regulatory data. Environ. Sci. Eur. 33, 68.
Wang, F.; Wei, D.; Chen, M.; Peng, S.; Guo, Q.; Zhang, X.; Liu, J.; Du, Y. (2022).A Synthetical Methodology for Identifying Priority Pollutants in Reclaimed Water Based on Meta-Analysis. J. Environ. Sci. 112, 106–114.
Mladenov, N.; Dodder, N.G.; Steinberg, L.; Richardot, W.; Johnson, J.; Martincigh, B.S.; Buckley, C.; Lawrence, T.; Hoh, E. (2022). Persistence and Removal of Trace Organic Compounds in Centralized and Decentralized Wastewater Treatment Systems. Chemosphere 286, 131621.
Teodosiu, C.; Gilca, A.F.; Barjoveanu, G.; Fiore, S. (2018). Emerging Pollutants Removal through Advanced Drinking Water Treatment: A Review on Processes and Environmental Performances Assessment. J. Clean. Prod. 197, 1210–1221.
Jiménez-Oyola, S.; Escobar Segovia, K.; García-Martínez, M.J.; Ortega, M.; Bolonio, D.; García-Garizabal, I.; Salgado, B. (2021). Human Health Risk Assessment for Exposure to Potentially Toxic Elements in Polluted Rivers in the Ecuadorian Amazon. Water, 13, 613.
Ali, I.; Singh, P.; Aboul-Enein, H.Y.; Sharma, B. (2009). Chiral Analysis of Ibuprofen Residues in Water and Sediment. Anal. Lett. 42, 1747–1760.
Basheer, A.A. (2018). Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century. In Chirality; Wiley: Hoboken, NJ, USA, Volume 30, pp. 402–406.
Sharma, M., Kant, R., Sharma, A.K. et al. (2024). Exploring the impact of heavy metals toxicity in the aquatic ecosystem. Int J Energ Water Res. https://doi.org/10.1007/s42108-024-00284-1.
Singh V, Singh N, Rai SN, Kumar A, Singh AK, Singh MP, Sahoo A, Shekhar S, Vamanu E, Mishra V. (2023). Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches. Toxics. 11(2):147. https://doi.org/10.3390/toxics11020147.

Most read articles by the same author(s)

1 2 > >>