A Review: Biochemical Role of House Fly in the Transmission of Medically Important Parasites

Page Numbers: 459-494
Published: 2024-07-31
Digital Object Identifier: 10.58578/kijst.v1i1.3685
Save this to:
Article Metrics:
Viewed : 39 times
Downloaded : 8 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Emmanuel Askebnde Joel Federal University Wukari, Taraba State, Nigeria
  • Emmanuel Alooma Federal University Wukari, Taraba State, Nigeria
  • Ubur Terzulum Wilson Federal University Wukari, Taraba State, Nigeria
  • Isaac John Umaru Federal University Wukari, Taraba State, Nigeria
  • Kingsley Iyoko Iseko Limi Hospital Limited Abuja Nigeria
  • Dafup Katdel Istifanus David Umahi Federal University Teaching Hospital, Ebonyi State Nigeria

Abstract

House flies (Musca domestica) can be found everywhere in the world except Antarctica, especially in regions with dense populations, hot weather, and inadequate hygiene. They are insects of small to medium size, featuring a unique gray body and big compound eyes that are colored red. House flies experience full metamorphosis, which includes four separate life phases: egg, larva (maggot), pupa, and adult. House flies are seen as important pests for public health because they can carry various pathogens, such as bacteria, viruses, protozoa, and parasites. Because of their close connection to human actions, capability to travel far distances, and inclination to breed in decaying organic material, they are highly effective carriers for transmitting different illnesses. House flies have been linked to the spread of more than 100 different disease-causing microorganisms, leading to illnesses like gastroenteritis, dysentery, and cholera. Apart from bacterial pathogens, house flies have also been discovered to play a role in spreading different viruses and medically significant parasites. This review describes the physical characteristics and behavior of the house fly, highlighting its unique attributes like compound eyes, antennae, thorax, abdomen, and wings. The stages of development of a house fly, from egg to larva, pupa, and adult. It also offers distinct ways in which house flies can spread medically significant parasites, emphasizing the public health impact of this occurrence, especially in regions with inadequate sanitation and restricted healthcare access. It is essential to comprehend the role of house flies in transmitting these parasites in order to create successful control methods and enhance public health results.

Keywords: Houseflies; Parasites; Disease transmission; Public health; Food Poisoning
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Joel, E. A., Alooma, E., Wilson, U. T., Umaru, I. J., Iseko, K. I., & Istifanus, D. K. (2024). A Review: Biochemical Role of House Fly in the Transmission of Medically Important Parasites. Kwaghe International Journal of Sciences and Technology, 1(1), 459-494. https://doi.org/10.58578/kijst.v1i1.3685

References

Abbas, M. N., M. Sajeel & S. Kausar, 2013. House fly (Musca domestica), a challenging pest; biology, management and control strategies. Elixir Entomol, 64: 19333-19338
Abdelgaleil, S. A., M.I. Mohamed, M.E. Badawy & S.A. El-arami, 2009. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol., 35: 518-525.
Abdelgaleil, S. A., M.I. Mohamed, M.E. Badawy & S.A. El-arami, 2009. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol., 35: 518-525.
Achiano KA, Giliomee JH. Biology of the Housefly predator Carcinops pumilio (Erichson) (Coleoptera:
Ahmed, S., A.S. Khan, M.S. Nisar & M.M. Shakir, 2015. Effect of aqueous extracts of different plants on life cycle and population build up parameters of house fly, Musca domestica L. (Diptera: Muscidae). J. Agric. Sci. Technol., 4: 1-6.
Approaches in Housefly Musca domestica L. 1758 Management. New Fut. Dev. Biopest. Res., 281-303.
Ashok, K., C.N. Bhargava, K.P. Babu, W. Rohan, M. Manamohan, A. Rai & R. Asokan, 2023. First report on CRISPR/Cas9 mediated editing of the eye colour gene, Tryptophan 2, 3dioxygenase in eggplant shoot and fruit borer Leucinodes orbonalis Guenée (Lepidoptera: Crambidae). J. Asia-Pac. Entomol., 26(1): 102031.
Ashok, K., C.N. Bhargava, K.P. Babu, W. Rohan, M. Manamohan, A. Rai & R. Asokan, 2023. First report on CRISPR/Cas9 mediated editing of the eye colour gene, Tryptophan 2, 3dioxygenase in eggplant shoot and fruit borer Leucinodes orbonalis Guenée (Lepidoptera: Crambidae). J. Asia-Pac. Entomol., 26(1): 102031.
Azevedo, L.H., L.G. Leite, J.G. ChaconOrozco, M.F.P. Moreira, M.P. Ferreira, L.M. González-Cano & E. Palevsky, 2019. Free living nematodes as alternative prey for soil predatory mites: An interdisciplinary case study of conservation biological control. Biol. Control, 132: 128-134.
Barin, A., F. Arabkhazaeli, S. Rahbari & S.A. Madani, 2010. The housefly, Musca domestica, as a possible mechanical vector of Newcastle disease virus in the laboratory and field. Med. Vet. Entomol., 24(1): 88-90
Barreto, M. L., Milroy, C. A., Strina, A., Prado, M. S., & Leite, J. P. (1978). Transmission of Entamoeba histolytica infection within a family. Memórias do Instituto Oswaldo Cruz, 73(1-2), 27-31.
Barreto, M. L., Milroy, C. A., Strina, A., Prado, M. S., & Leite, J. P. (1978). Transmission of Entamoeba histolytica infection within a family. Memórias do Instituto Oswaldo Cruz, 73(1-2), 27-31.
Belton P, Rutherford TA, Trotter DB, Webster JM. Heterorhabditis heliothidis: A potential biological control agent of house flies in caged-layer poultry barns. Journal of Nematology 1987; 19:263-266.
Bethony, J., Brooker, S., Albonico, M., Geiger, S. M., Loukas, A., Diemert, D., & Hotez, P. J. (2018). Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. The Lancet, 367(9521), 1521-1532.
Björs, M. 2023. Separation and acidification of digested animal manure.
Boulesteix, G., P. Le Dantec, B. Cheval_ier, M. Dieng, B. Niang & B. Diatta, 2005. Rôle de Musca domestica dans la transmission des bactéries multirésistantes dans un service de réanimation en Afrique subsaharienne. Ann. Francaises d'Anesthesie et de Reanimation, 24(4): 361-365.
Bourtzis, K., & M.J. Vreysen, 2021. Sterile insect technique (SIT) and its applications. Insects, 12(7): 638.
Bowden J. An analysis of factors affecting catches of insects in light-traps. Bulletin of Entomological Research 1982; 72:535-556
Brewer, N., M.S. McKenzie, N. Melkonjan, M. Zaky, R. Vik, J.G. Stoffolano & W.C. Webley, 2021. Persistence and Significance of Chlamydia trachomatis in the House fly, Musca domestica L. Vector-Borne Zoonotic Dis., 21(11): 854-863.
Brown, H.C. 2018. North Carolina jury fines Smithfield foods $50 million in unprecedented hog nuisance lawsuit.
Butler SM, Gerry AC, Mullens BA. Housefly (Diptera: Muscidae) activity near baits containing (Z)-9- tricosene and efficacy of commercial toxic fly baits on a southern California dairy. Journal of Economic Entomology 2007; 100:1489-1495.
Carlberg G. Bacillus thuringiensis and microbial control of flies. Journal of Applied Microbiology and Biotechnology 1986; 2:267-274.
Coler RR, Boucias DG, Frank JH, Maruniak JE, GarciaCanedo A, Pendland JC. Characterization and description of a virus causing salivary gland hyperplasia in the housefly, Musca domestica. Medical and Veterinary Entomology 1993; 7:275-282.
Das, J.K., Hadi, Y. B., Salam, R. A., Hoda, M., Lassi, Z. S., & Bhutta, Z. A. 2018. Fly control to prevent diarrhoea in children. Cochrane Database Syst. Rev., (12).
Davies, M. P., Sonego, P., & Fleck, F. (2018). Environmental factors influencing the spread of vector-borne diseases: A review. Global Health Action, 11(1), 143-152.
De Jesús, A.J., A.R. Olsen, J.R. Bryce & R.C.Whiting, 2004. Quantitative contamination and transfer of Escherichia coli from foods by house flies, Musca domestica L. (Diptera: Muscidae). Int. J. Food Microbiol., 93(2): 259262.
de Jonge, N., T.Y. Michaelsen, R. Ejbye-Ernst, A. Jensen, M.E. Nielsen, S. Bahrndorff & J.L. Nielsen, 2020. Housefly (Musca domestica L.) associated microbiota across different life stages. Sci. Rep., 10(1): 7842.
Dearden, P.K., N.J. Gemmell, O.R. Mercier, P.J. Lester, M.J. Scott, R.D. Newcomb & D.R. Penman, 2018. The potential for the use of gene drives for pest control in New Zealand: a perspective. J. R. Soc. N. Z., 48(4): 225-244.
Dehghani, R., & H. Kassiri, 2020. A brief review on the possible role of houseflies and cockroaches in the mechanical transmission of coronavirus disease 2019 (COVID-19). Arch. Clin. Infect. Dis., 15.
Dold, C., & C.V. Holland, 2011. Ascaris and ascariasis. Microbes Infect., 13(7): 632-637.
Emmanuel, O.N.Y.E.N.W.E., O.OW. OKORE, P.C. Ubiaru & A.B.E.L. Chika, 2016. Houseflyborne helminth parasites of Mouau and its public health implication for the university community. Animal Res. Int., 13(1), 2352-2358.
Fan Y, Pei X, Guo S, Zhang Y, Luo Z, Liao X, Pei Y. Increased virulence using engineered protease chitin binding domain hybrid expressed in the entomopathogenic fungus Beauveria bassiana. Microbial Pathogenesis 2010; 49:376-380.
Farhana, I., Z.Z Hossain, S.M. Tulsiani, P.K.M. Jensen & A. Begum, 2016. Survival of Vibrio cholerae O1 on fomites. World J. Microbiol. Biotechnol., 32, 1-8.
Fayer, R., Santin, M., & Macarisin, D. (2012). Detection of concurrent infection of dairy cattle with Blastocystis, Cryptosporidium, Giardia, and Enterocytozoon by molecular and microscopic methods. Parasitology Research, 111(3), 1349-1355.
Fayer, R., Santin, M., & Macarisin, D. (2012). Detection of concurrent infection of dairy cattle with Blastocystis, Cryptosporidium, Giardia, and Enterocytozoon by molecular and microscopic methods. Parasitology Research, 111(3), 1349-1355.
Feldmeyer, B., I. Pen & L.W. Beukeboom, 2010. A microsatellite marker linkage map of the house fly, Musca domestica: evidence for male recombination. Insect Mol. Biol., 19(4), 575-581.
Figurskey, A. C., B. Hollingsworth, M.S. Doyle & M.H. Reiskind, 2022. Effectiveness of autocidal gravid trapping and chemical control in altering abundance and age structure of Aedes albopictus. Pest Manage. Sci., 78(7), 29312939.
Förster, M., K. Sievert, S. Messler, S. Klimpel & K. Pfeffer, 2009. Comprehensive study on the occurrence and distribution of pathogenic microorganisms carried by synanthropic flies caught at different rural locations in Germany. J. Med. Entomol., 46(5), 1164-1166.
Fotedar, R. (2001). Vector potential of houseflies (Musca domestica) in the transmission of Vibrio cholerae in India. Acta trop., 78(1), 31-34.
Galante, D., M.A. Cafiero, D.A. Raele, N. Pugliese, I. Padalino, N. Cavaliere & C. Buonavoglia, 2019. Identification and characterization of Orf viruses isolated from sheep and goats in Southern Italy. Vet. Ital., 55(4), 347-353.
Geden CJ, Hogsette JA. Suppression of house flies (Diptera: Muscidae) in Florida poultry houses by sustained releases of Muscidifurax raptor and Spalangia cameroni (Hymenoptera: Pteromalidae). Environmental Entomology 2006; 35:75-82.
Geden, C. J., & J.A. Hogsette, 2001. Research and Extension Needs for Integrated Pest Management for Arthropods of Veterinary Importance. Proceedings of a Workshop in Lincoln, Nebraska, April 12-14, 1994 Last Updated–October 2001.
Gong, J.T., T.P. Li, M.K. Wang, & X.Y. Hong, 2023. Wolbachia-based strategies for control of agricultural pests. Curr. Opin. Insect Sci., 101039
Goulson, D., & Derwent, L. C. (2018). Effectiveness of housefly traps in reducing fly populations. Pest Management Science, 74(2), 210-215.
Graczyk, T. K., Fayer, R., Trout, J. M., Lewis, E. J., Farley, C. A., Sulaiman, I., & Lal, A. A. (2005). Giardia sp. cysts and infectious Cryptosporidium parvum oocysts in the feces of migratory Canada geese (Branta canadensis). Applied and Environmental Microbiology, 64(7), 2736-2738.
Graczyk, T. K., Fayer, R., Trout, J. M., Lewis, E. J., Farley, C. A., Sulaiman, I., & Lal, A. A. (2005). Giardia sp. cysts and infectious Cryptosporidium parvum oocysts in the feces of migratory Canada geese (Branta canadensis). Applied and Environmental Microbiology, 64(7), 2736-2738.
Graczyk, T. K., Knight, R., Gilman, R. H., & Cranfield, M. R. (2001). The role of non-biting flies in the epidemiology of human infectious diseases. Microbes and Infection, 3(3), 231-235.
Graczyk, T. K., Knight, R., Gilman, R. H., & Cranfield, M. R. (2001). The role of non-biting flies in the epidemiology of human infectious diseases. Microbes and Infection, 3(3), 231-235.
Greenberg B. Flies and disease, Volume second, Princeton, Princeton university press. New Jersy, 1973; 447
Greenberg, B. (1971). Flies and disease (Vol. 1). Princeton University Press.
Greenberg, B. (1971). Flies and disease (Vol. 1). Princeton University Press.
Greenberg, B. (1973). Flies and disease (Vol. 2). Princeton University Press.
Greenberg, B. (1973). Flies and disease (Vol. 2). Princeton University Press.
Grubel P, Hoffman JS, Chong FK, Burstein NA, Mepani C, Cave DR. Vector potential of houseflies (Musca domestica) for Helicobacter pylori. Journal of Clinical Microbiology 1997; 35(6):1300-1303.
Grzywacz, A., T. Pape & K. Szpila, 2012. Larval morphology of the lesser house fly, Fannia canicularis. Med. Vet. Entomol., 26(1), 70-82.
Hamm, R. L., & J.G. Scott, 2008. Changes in the frequency of YM versus IIIM in the housefly, Musca domestica L., under field and laboratory conditions. Genet. Res., 90(6), 493498.
Hendrata, R., & D. Riyanto, 2023. The effect of root growth regulator and environmental sanitation of salacca edulis seedling on Sleman. In AIP Conference Proceedings (Vol. 2583, No. 1). AIP Publishing.
Histeridae). Biocontrol 2005; 50:899-910.
Hogsette JA, Farkas R, Coler RR. Development of Hydrotaea aenescens (Diptera: Muscidae) in manure of unweaned dairy calves and lactating cows. Journal of Economic Entomology 2002; 95:527-530.
Holt, P.S., Geden, C. J., Moore, R. W., & Gast, R. K. 2007. Isolation of Salmonella enterica serovar Enteritidis from house flies (Musca domestica) found in rooms containing Salmonella serovar Enteritidis-challenged hens. Appl. Environ. Microbiol., 73(19), 6030-6035.
Hung, K.Y., T.J. Michailides, J.G. Millar, A. Wayadande & A.C. Gerry, 2015. House fly (Musca domestica L.) attraction to insect honeydew. PloS one, 10(5), e0124746
Ileke, K.D., M.F. Olaoye & I.O. Olabimi, 2020. Beneficial utilization of house fly, Musca domestica [DIPTERA: MUSCIDAE]. Leban. Sci. J., 21(2), 146.
Ileke, K.D., M.F. Olaoye & I.O. Olabimi, 2020. Beneficial utilization of house fly, Musca domestica [DIPTERA: MUSCIDAE]. Leban. Sci. J., 21(2), 146.
International Congress of Entomology 1958; 2:157-172.
Iqbal, W., M.F. Malik, M.K. Sarwar, I. Azam, N. Iram & A. Rashda, 2014. Role of housefly (Musca domestica, Diptera; Muscidae) as a disease vector; a review. J. Entomol. Zool. Stud., 2(2), 159-163.
Isman MB. Plant essential oils for pest and disease management. Crop Protection 2000; 19:603-608.
Johnson C, Bishop AH, Turner CL. Isolation and activity of strains of Bacillus thuringiensis toxic to larvae of the housefly (Diptera: Muscidae) and tropical blowflies (Diptera: Calliphoridae). Journal of Invertebrate Pathology 1998; 71:138-144.
Jourdan, P. M., Lamberton, P. H., Fenwick, A., & Addiss, D. G. (2018). Soil-transmitted helminth infections. The Lancet, 391(10117), 252-265.
Kassiri, H., K. Akbarzadeh & A. Ghaderi, 2012. Isolation of pathogenic bacteria on the house fly, Musca domestica L. (Diptera: Muscidae), body surface in Ahwaz hospitals, Southwestern Iran. Asian Pac. J. Trop. Biomed., 2(2), S1116S1119.
Kebede, M., & T. Fite, T. 2022. RNA interference (RNAi) applications to the management of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae): Its current trends and future prospects. Front. Mol. Biosci., 9, 944774.
Keiding J. The housefly—biology and control. Training and information guide (advanced level). Geneva, World Health Organization, 1986 (unpublished document WHO/VBC/86.937; available on request from Division of Control of Tropical Diseases, World Health Organization, 1211 Geneva 27, Switzerland).
Kettle DS: Muscidae (Houseflies, Stableflies). In Medical and Veterinary Entomology 1990; 223–240
Khamesipour, F., K.B. Lankarani, B. Honarvar & T.E. Kwenti, 2018. A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health, 18, 1-15.
Khamesipour, F., K.B. Lankarani, B. Honarvar & T.E. Kwenti, 2018. A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health, 18, 1-15.
Koller, J., L. Sutter, J. Gonthier, J. Collatz & L. Norgrove, 2023. Entomopathogens and Parasitoids Allied in Biocontrol: A Systematic Review. Pathogens, 12(7), 957.
Kosek, M., Alcantara, C., & Lima, A. A. (2018). Epidemiology of Giardia and Cryptosporidium infections in developing countries. Parasitology, 143(1), 3-14.
Koskinioti, P., A.A. Augustinos, D.O. Carvalho, M. Misbah-ul-Haq, G. Pillwax, L.D. de la Fuente & K. Bourtzis, 2021. Genetic sexing strains for the population suppression of the mosquito vector Aedes aegypti. Phil. Trans. R. Soc. B., 376(1818), 20190808.
Koul O, Walia S, Dhaliwal GS. Essential oils as green pesticides: Potential and constraints. Biopesticides International 2008; 4:63-84.
Kumar, P., S. Mishra, A. Malik & S. Satya, 2011. Repellent, larvicidal and pupicidal properties of essential oils and their formulations against the house fly, Musca domestica. Med. Vet. Entomol., 25(3), 302-310
Kyrou, K., A.M. Hammond, R. Galizi, N. Kranjc, A. Burt, A.K. Beaghton & A. Crisanti, 2018. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol., 36(11), 10621066.
Lance, D.R., & D.O. McInnis, 2021. Biological basis of the sterile insect technique. Sterile Insect Technique, 113-142.
Leftwich, P.T., M. Bolton & T. Chapman, 2016. Evolutionary biology and genetic techniques for insect control. Evol. Appl., 9(1), 212-230.
Lietze VU, Abd-Alla AMM, Vreysen MJB, Geden CG, Boucias DG. Salivary gland hypertrophy viruses: a novel group of insect pathogenic viruses. Annual Review of Entomology 2011a; 56:63-80.
Lietze VU, Geden CJ, Blackburn P, Boucias DG. Effects of salivary gland hypertrophy virus on the reproductive behavior of the housefly, Musca domestica. Applied and Environmental Microbiology 2007; 73:6811-6818.
Lietze VU, Salem TZ, Prompiboon P, Boucias DG. Tissue tropism of the Musca domestica salivary gland hypertrophy virus. Virus Research 2010; 155:20-27.
Lietze VU, Salem TZ, Prompiboon P, Boucias DG. Transmission of MdSGHV among adult houseflies, Musca domestica (Diptera: Muscidae), occurs via salivary secretions and excreta. Journal of Invertebrate Pathology 2009; 101:49-55
Lysyk TJ, Kalischuk-Tymensen LD, Rochon K, Selinger LB. Activity of Bacillus thuringiensis isolates against immature horn fly and stable fly (Diptera: Muscidae). Journal of Economic Entomology 2010; 103:1019-1029.
Marques-dos-Santos, C., J. Serra, G. Attard, U. Marchaim, S. Calvet & B. Amon, 2023. Available Technical Options for Manure Management in Environmentally Friendly and Circular Livestock Production. In Technology for Environmentally Friendly Livestock Production (pp. 147-176). Cham: Springer International Publishing.
Merchant ME, Flanders RV, Williams RE. Seasonal abundance and parasitism of Housefly (Diptera: Muscidae) pupae in enclosed, shallow-pit poultry houses in Indiana. Environmental Entomology 1987; 16:716-721.
Meunier, A., Amar, M., Sow, D., Roucher, C., Legall, P., & Gantois, N. (2016). Role of the housefly (Musca domestica) in the transmission of human and animal parasites. Parasite, 23, 25.
Meunier, A., Amar, M., Sow, D., Roucher, C., Legall, P., & Gantois, N. (2016). Role of the housefly (Musca domestica) in the transmission of human and animal parasites. Parasite, 23, 25.
Miller RW, Pickens LG, Gordon CH. Effect of Bacillus thuringiensis in cattle manure on Housefly (Diptera: Muscidae) larvae. Journal of Economic Entomology 1971; 64:902-903.
Miranda, C.D., J.A. Cammack & J.K. Tomberlin, 2023. Large-scale production of house fly, Musca domestica (Diptera: Muscidae), larvae fed 3 manure types. J. Econ. Entomol., toad099.
Moriya K, Fujibayashi T, Yoshihara T, Matsuda A, Sumi N, Umezaki et al. Verotoxin-producing Escherichia coli O157:H7 carried by the housefly in Japan. Medical and Veterinary Entomology 1999; 13:214-216.
Mullin, L. J. 2020. The effects of infusion water type and fermentation time on mosquito and non-target organism collected in the CDC’s Autocidal Gravid Ovitrap. J. Florida Mosq. Control Assoc., 67(1), 23-27.
Mwamburi LA, Laing MD, Miller R. Interaction between Beauveria bassiana and Bacillus thuringiensis var. israelensis for the control of Housefly larvae and adults in poultry houses. Poultry Science 2009; 88:2307-2314.
Mwamburi LA, Laing MD, Miller R. Laboratory and field eval_uation of formulated Bacillus thuringiensis var. israelensis as a feed additive and using topical applications for control of Musca domestica (Diptera: Muscidae) larvae in caged-poultry manure. Environmental Entomology 2011b; 40:52-58.
Mwamburi LA, Laing MD, Miller R. Laboratory screening of insecticidal activities of Beauveria bassiana and Paecilomyces lilacinus against larval and adult housefly (Musca domestica). African Entomology 2011a; 18:38-46.
Nasirian, H. (2017). Infestation of cockroaches (Insecta: Blattaria) in the human dwelling environments: a systematic review and metaanalysis. Acta Trop., 167, 86-98.
Nayduch, D., & R.G. Burrus, 2017. Flourishing in filth: house fly–microbe interactions across life history. Ann. Entomol. Soc. Am., 110(1), 618.
Nazni WA, Luke H, Wan Rozita WM, Abdullah AG, Sadiyah I, Azhari AH et al. Determination of the flight range and dispersal of the Housefly, Musca domestica using mark release and recapture technique. Tropical Biomedicine 2005; 22(1):53-61
Norris, R. H., O.S. Baker, E.R. Burgess IV, A. Tarone, A. Gerry, R.T.T. Fryxell & J.G. Scott, 2023. Selection for, and characterization of, fluralaner resistance in the house fly, Musca domestica. Pestic. Biochem. Physiol., 191, 105355.
Nteziyaremye, P., Cherutoi, J., Makatiani, J., & Muhizi, T. 2023. Insecticidal potential of essential oils from Cupressus lusitanica growing in ecological zones of Rwanda against adult housefly, Musca domestica L. Int. J. Trop. Insect Sci., 1-13.
Olagunju, E. A. 2022. House fly: Common zoonotic diseases transmitted and control. J. Zoonotic Dis., 6(1), 1-10.
Olesen, B., Neimann, J., Böttiger, B., Ethelberg, S., Schiellerup, P., Jensen, C., ... & Molbak, K. (2018). Etiology of diarrheal disease outbreaks in Denmark, 1995–2017. The Journal of Infectious Diseases, 207(1), 144-152.
Pagendam, D. E., B.J. Trewin, N. Snoad, S.A. Ritchie, A.A Hoffmann, K.M. Staunton & N. Beebe, 2020. Modelling the Wolbachia incompatible insect technique: strategies for effective mosquito population elimination. BMC Biol., 18, 1-13
Paliy, A. P., N.V. Sumakova & K.V. Ishchenko, 2018. Biological control of house fly. Ukr. J. Ecol., 8(2), 230-234.
Perry AS. Factors associated with DDT resistance in the Housefly Musca domestica. Proceedings of 10th
Raele, D. A., J.G. Stoffolano Jr, I. Vasco, G. Pennuzzi, M.C. Nardella La Porta & M.A. Cafiero, 2021. Study on the role of the common house fly, Musca domestica, in the spread of ORF Virus (Poxviridae) DNA under laboratory conditions. Microorganisms, 9(11), 2185.
Rahuma, N., K.S. Ghenghesh, R. Ben Aissa & A. Elamaari, 2005. Carriage by the housefly (Musca domestica) of multiple-antibioticresistant bacteria that are potentially pathogenic to humans, in hospital and other urban environments in Misurata, Libya. Ann. Trop. Med. Parasitol., 99(8), 795-802.
Raza, H. A., R.M. Amir, M.A. Idrees, M. Yasin, G. Yar, N. Farah & M. Younus, 2019. Residual impact of pesticides on environment and health of sugarcane farmers in Punjab with special reference to integrated pest management. J. Global Innov. Agric. Soc. Sci., 7(2), 79-84.
Renn N. Mortality of immature houseflies (Musca domestica) in artificial diet and chicken manure after exposure to encapsulated entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae). Biocontrol Science and Technology 1995; 5:349-359.
Renn N. The efficacy of entomopathogenic nematodes for controlling housefly infestations of intensive pig units. Medical and Veterinary Entomology 1998; 12:46-51.
Roffeis, M., B. Muys, J. Almeida, E. Mathijs, W.M.J. Achten, B. Pastor & S. Rojo, 2015. Pig manure treatment with housefly (Musca domestica) rearing–an environmental life cycle assessment. J. Insects Food Feed, 1(3), 195-214.
Rupes V, Ryba J, Hanslova H, Weiser J. The efficiency of beta-exotoxin on Bacillus thuringiensis on susceptible and resistant Housefly. In: Proceedings of the International Conference of Medical and Veterinary Dipterology 1987; 262-265.
Sack, D.A., R.B. Sack & G.B. Nair, 2004. Siddique Ak. Cholera lancet, 363(9404), 233233.
Sarwar MK, Azam I, Iram N, Iqbal W, Rashda A, Anwer F et al. Cotton Aphid Aphis gossypii L. (Homoptera; Aphididae); A challenging pest; Biology and control strategies: A review. International Journal of Applied Biology and Pharmaceutical Technology 2014; 5(1):288-294.
Sarwar, M. K., I. Azam, N. Iram, W. Iqbal, A. Rashda, F. Anwer & R. Ali, 2014. Cotton Aphid Aphis gossypii L. (Homoptera; Aphididae); a Challenging Pest; Biology and Control Strategies: A Review. (unpublished)
Schairer, C. E., J. Najera, A.A. James, O.S. Akbari & C.S. Bloss, 2021. Oxitec and Mosquito Mate in the United States: lessons for the future of gene drive mosquito control. Pathog. Glob. Health, 115(6), 365-376.
Schaumburg, F., F.C. Onwugamba, R. Akulenko, G. Peters, A. Mellmann, R. Köck & K. Becker, 2016. A geospatial analysis of flies and the spread of antimicrobial resistant bacteria. Int. J. Med. Microbiol., 306(7), 566571.
Schaumburg, F., F.C. Onwugamba, R. Akulenko, G. Peters, A. Mellmann, R. Köck & K. Becker, 2016. A geospatial analysis of flies and the spread of antimicrobial resistant bacteria. Int. J. Med. Microbiol., 306(7), 566571.
Scot JG, Roush RT, Rutz DA. Insecticide resistance of house flies (Diptera: Muscidae) from New York USA dairies. Journal of Agricultural Entomology 1989; 6:53-64.
Scot JG, Roush RT, Rutz DA. Insecticide resistance of house flies (Diptera: Muscidae) from New York USA dairies. Journal of Agricultural Entomology 1989; 6:53-64.
Scott JG, Alefanti TG, Kaufman PE, Rutz DA. Insecticide resistance in house flies from caged layer poultry facilities. Pest Management Science 2000; 56:47-153.
Scott, H. G., & Borom, M. (2018). Vectors of infectious diseases: houseflies as mechanical vectors. American Journal of Public Health, 108(S3), S178-S183.
Senthoorraja, R., P. Senthamarai Selvan & S. Basavarajappa 2022. Eco-Smart Biorational
Sharma, A., S.D. Heinze, Y. Wu, T. Kohlbrenner, I. Morilla, C. Brunner & D. Bopp, 2017. Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22. Science, 356(6338), 642-645.
Siriwattanarungsee, S., K.L. Sukontason, B. Kuntalue, S. Piangjai, J.K. Olson & K. Sukontason, 2005. Morphology of the puparia of the house fly, Musca domestica (Diptera: Muscidae) and blowfly, Chrysomya megacephala (Diptera: Calliphoridae). Parasitol. Res., 96, 166-170.
Six DL, Mullens BA. Seasonal preval_ence of Entomophthora muscae and introduction of Entomophthora schizophorae (Zygomycotina: Entomophthorales) in Musca domestica (Diptera: Muscidae) populations on California dairies. Biological Control 1996; 6:315-323.
Skovgard H, Jespersen JB. Activity and relative abundance of hymenopterous parasitoids that attack puparia of Musca domestica and Stomoxys calcitrans (Diptera: Muscidae) on confined pig and cattle farms in Denmark. Bulletin of Entomological Research 1999; 89:263-269.
Son, J. H., T. Kohlbrenner, S. Heinze, L.W. Beukeboom, D. Bopp & R.P. Meisel, 2019. Minimal effects of proto-Y chromosomes on house fly gene expression in spite of evidence that selection maintains stable polygenic sex determination. Genetics, 213(1), 313-327.
Sprygin, A., Y. Pestova, D.B. Wallace, E. Tuppurainen & A.V. Kononov, 2019. Transmission of lumpy skin disease virus: A short review. Virus Res., 269, 197637.
Sudo, M., D. Takahashi, D.A. Andow, Y. Suzuki & T. Yamanaka 2018. Optimal management strategy of insecticide resistance under various insect life histories: Heterogeneous timing of selection and interpatch dispersal. Evol. Appl., 11(2), 271283.
Sulaiman, S., Othman, W. H., & Omar, B. (2018). Houseflies as vectors of bacterial pathogens causing food poisoning. Tropical Biomedicine, 35(1), 14-19.
Tan, S. W., Yap, K. L., & Lee, H. L. (2018). Transmission of Salmonella and Shigella by houseflies (Musca domestica L.). Journal of Vector Ecology, 43(1), 93-97.
Urzua A, Santander R, Echeverria J, Cabezas C, Palacios SM, Rossi Y. Insecticide properties of the essential oils from Haplopappus foliosus and Bahia ambrosioides against the housefly, Musca domestica. Journal of the Chilean Chemistry Society 2010; 55:392-395.
van Zanten, H.H., H. Mollenhorst, D.G. Oonincx, P. Bikker, B.G. Meerburg, B. G., & De Boer, I. J. (2015). From environmental nuisance to environmental opportunity: housefly larvae convert waste to livestock feed. J. Cleaner Prod., 102, 362-369.
Wilson BH, Burns EC. Induction of resistance to Bacillus thuringiensis in a laboratory strain of house flies. Journal of Economic Entomology 1968; 6: 1747-1748
Zumla, A., Petersen, E., & Nyirenda, T. (2018). Amoebiasis and giardiasis: neglected intestinal protozoal diseases in Africa. The Lancet Global Health, 6(4), e374-e375.

Most read articles by the same author(s)

<< < 1 2 3 4 5