Environmental Remediation Using Nanoparticles: A Review

Page Numbers: 428-442
Published: 2024-07-31
Digital Object Identifier: 10.58578/kijst.v1i1.3622
Save this to:
Article Metrics:
Viewed : 18 times
Downloaded : 11 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Ruslan Shamsuddeen Federal University Wukari, Taraba State, Nigeria
  • Ansar Bilyaminu Adam Federal University Wukari, Taraba State, Nigeria
  • Twan Sale Mathew Federal University Wukari, Taraba State, Nigeria
  • Musa Yahaya Abubakar Federal University Wukari, Taraba State, Nigeria

Abstract

The use of nanoparticles for environmental remediation has gained significant attention in recentyears due to their unique properties and potential to revolutionize the field. This review providesa comprehensive overview of the current state of knowledge on the application of nanoparticlesfor environmental remediation, including the removal of heavy metals, pesticides, industrialeffluents, and other pollutants from water, soil, and air. The review discusses the various types ofnanoparticles used, including metal, oxide, and carbon-based nanoparticles, and theirmechanisms of action. The advantages and limitations of nanoparticle-based remediationtechnologies are also eval_uated, and future research directions are identified. The reviewhighlights the potential of nanoparticles to enhance the efficiency, sustainability, and cost-effectiveness of environmental remediation processes, and underscores the need for furtherresearch to fully realize their potential.

Keywords: Nanoparticles; Environmental Remediation; Pollution; Water Treatment; Soilremediation
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Shamsuddeen, R., Adam, A. B., Mathew, T. S., & Abubakar, M. Y. (2024). Environmental Remediation Using Nanoparticles: A Review. Kwaghe International Journal of Sciences and Technology, 1(1), 428-442. https://doi.org/10.58578/kijst.v1i1.3622

References

AbdEllah, N. H., & Abouelmagd, S. A. (2016). Surface functionalization of polymeric nanoparticles for tumor drug delivery: Approaches and challenges. Expert Opinion on Drug Delivery, 13(1), 1-14. https://doi.org/10.1080/17425247.2016.1213238
Abouelmagd, S. A., Meng, F., Kim, B.-K., Hyun, H., & Yeo, Y. (2016). Tannic acid-mediated surface functionalization of polymeric nanoparticles. ACS Biomaterials Science & Engineering, 2(6), 1066-1075. https://doi.org/10.1021/acsbiomaterials.6b00497
Ademiluyi, F. T., & David-West, E. O. (2012). Effect of chemical activation on the adsorption of heavy metals using activated carbons from waste materials. International Scholarly Research Notices, 2012(1), 674209.
Adeogun, A. O., Ibor, O. R., Khan, E. A., Chukwuka, A. V., Omogbemi, E. D., & Arukwe, A. (2020). Detection and occurrence of microplastics in the stomach of commercial fish species from a municipal water supply lake in southwestern Nigeria. Environmental Science and Pollution Research, 27(25), 31035-31045. https://doi.org/10.1007/s11356-020-08707-1
Ali, S., Khan, I., Khan, S. A., Sohail, M., Ahmed, R., Rehman, A., Ur Ansari, M. S., & Morsy, M. A. (2017). Electrocatalytic performance of Ni@Pt core–shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction. Journal of Electroanalytical Chemistry, 795, 172-179. https://doi.org/10.1016/j.jelechem.2017.04.040
Ali, I. (2012). New generation adsorbents for water treatment. Chemical Reviews, 112(10), 5073-5091. https://doi.org/10.1021/cr300103y
Ali, I., & Gupta, V. K. (2006). Advances in water treatment by adsorption technology. Nature Protocols, 1(6), 2661-2667. https://doi.org/10.1038/nprot.2006.378
Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714-727. https://doi.org/10.1016/j.ecoenv.2019.02.074
Astruc, D. (2020). Introduction: Nanoparticles in catalysis. Chemical Reviews, 120(2), 461-463. https://doi.org/10.1021/acs.chemrev.8b00696
Ayub, A., Raza, Z. A., Majeed, M. I., Tariq, M. R., & Irfan, A. (2020). Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water. International Journal of Biological Macromolecules, 163, 603-617. https://doi.org/10.1016/j.ijbiomac.2020.08.087
Bahadar, H., Maqbool, F., Niaz, K., & Abdollahi, M. (2016). Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal, 20(1), 1-11. https://doi.org/10.7508/ibj.2016.01.001
Berry, C. C., & Curtis, A. S. (2003). Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 36(13), R198-R206. https://doi.org/10.1088/0022-3727/36/13/203
Boretti, A., & Rosa, L. (2019). Reassessing the projections of the world water development report. NPJ Clean Water, 2(1), 15. https://doi.org/10.1038/s41545-019-0026-9
Bulut, Y., & Aydin, H. (2005). A kinetic and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1-3), 259-267. https://doi.org/10.1016/j.desal.2005.01.047
Cotanch, K., Ballard, C., Emerich, W., Sniffen, C., & Thomas, E. (2003). The feeding of supplemental phosphorus on dairy farms in the Lake Champlain Basin: An education/demonstration project. Journal of Dairy Science, 86(1), 246-252. https://doi.org/10.3168/jds.S0022-0302(03)73531-5
Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews, 41(7), 2740-2779. https://doi.org/10.1039/C1CS15237H
Ferreira, A. J., Cemlyn-Jones, J., & Robalo-Cordeiro, J. (2013). Nanoparticles, nanotechnology and pulmonary nanotoxicology. Revista Portuguesa de Pneumologia, 19(1), 28-37. https://doi.org/10.1016/j.rppneu.2012.09.003
Feynman, R. P. (1960). There's plenty of room at the bottom. Engineering and Science, 23(5), 22-36. https://resolver.caltech.edu/CaltechES:23.5.1960Bottom
Golobič, M., Jemec, A., Drobne, D., Romih, T., Kasemets, K., & Kahru, A. (2012). Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved Cu ions inside the digestive tract. Environmental Science & Technology, 46(22), 12112-12119. https://doi.org/10.1021/es3022182
Guo, T., Yao, H., Song, J., Liu, C., Zhu, Y., Ma, X., & Chen, S. (2010). Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. Journal of Ethnopharmacology, 130(1), 116-121. https://doi.org/10.1016/j.jep.2010.05.010
Handy, R. D., von der Kammer, F., Lead, J. R., Hassellöv, M., Owen, R., & Crane, M. (2008). The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17(4), 287-314. https://doi.org/10.1007/s10646-008-0199-8
Hassan, A. O., Case, J. B., Winkler, E. S., Thackray, L. B., Kafai, N. M., Bailey, A. L., ... & Diamond, M. S. (2020). A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell, 182(3), 744-753. https://doi.org/10.1016/j.cell.2020.06.024
Hisatomi, T., Kubota, J., & Domen, K. (2014). Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 43(23), 7520-7535. https://doi.org/10.1039/C3CS60378D
Ibrahim, A. K., Kelly, S. J., Adams, C. E., & Glazebrook, C. (2013). A systematic review of studies of depression preval_ence in university students. Journal of Psychiatric Research, 47(3), 391-400. https://doi.org/10.1016/j.jpsychires.2012.11.015
Jasper, J. M. (2010). Social movement theory today: Toward a theory of action?. Sociology Compass, 4(11), 965-976. https://doi.org/10.1111/j.1751-9020.2010.00329.x
Kadi, M. W., & Mohamed, R. M. (2013). Enhanced photocatalytic activity of ZrO2/TiO2 heterojunction for dye degradation under visible light irradiation. Journal of Environmental Chemical Engineering, 1(4), 1178-1184. https://doi.org/10.1016/j.jece.2013.08.016
Kallioras, A., & Gkoutselis, M. (2018). The impact of economic crises on environmental regulation: An empirical analysis. Journal of Environmental Management, 223, 240-248. https://doi.org/10.1016/j.jenvman.2018.06.079
Kumari, S., & Maji, S. K. (2020). A review on the control and stabilization of contaminants in water through advanced oxidation processes. Journal of Water Process Engineering, 36, 101365. https://doi.org/10.1016/j.jwpe.2020.101365
Li, X., Wang, L., Lu, H., Li, X., Xue, Q., Zhang, Z., & Zheng, C. (2016). Enhanced photocatalytic performance of TiO2 under visible light by incorporating nitrogen and fluorine co-doping. Applied Catalysis B: Environmental, 193, 46-56. https://doi.org/10.1016/j.apcatb.2016.03.023
Liu, J., & Gao, L. (2013). Nanoparticle-based photothermal therapy. Journal of Nanoscience and Nanotechnology, 13(2), 1047-1057. https://doi.org/10.1166/jnn.2013.6921
Mahmood, N., & Ali, I. (2020). Synthesis and characterization of magnetically recoverable nanoparticles for environmental remediation: A review. Journal of Environmental Chemical Engineering, 8(2), 103889. https://doi.org/10.1016/j.jece.2020.103889
Mallory, C., & Al-Khaldi, H. (2017). A novel hybrid photocatalyst system for degradation of organic pollutants in water. Journal of Environmental Science and Health, Part A, 52(5), 497-505. https://doi.org/10.1080/10934529.2017.1293502
McCullough, S., & Waller, B. (2016). Nanoparticles and their applications in the environmental field. Journal of Environmental Protection, 7(8), 1170-1183. https://doi.org/10.4236/jep.2016.78097
Miele, C., & Sasso, D. (2015). Efficient synthesis of iron oxide nanoparticles for biomedical applications. Nanotechnology, 26(13), 135601. https://doi.org/10.1088/0957-4484/26/13/135601
Nair, B., & Mohamed, M. (2018). The role of nanomaterials in the removal of pollutants from wastewater: A review. Environmental Technology & Innovation, 11, 230-245. https://doi.org/10.1016/j.eti.2018.03.003
Piao, Y., & Zhang, Z. (2014). The effect of nanoparticle size on the toxicity and bioavailability of metal ions. Journal of Hazardous Materials, 268, 117-124. https://doi.org/10.1016/j.jhazmat.2014.01.011
Rana, N. K., & Doss, S. P. (2022). Effectiveness of nanomaterials in water treatment: A comprehensive review. Environmental Advances, 10, 100220. https://doi.org/10.1016/j.envadv.2022.100220
Rehman, M. Z., & Khan, M. A. (2018). A comprehensive review on the potential applications of nanoparticles in agriculture. Journal of Nanoparticle Research, 20(4), 118. https://doi.org/10.1007/s11051-018-4231-5
Shah, A. A., & Gohar, M. N. (2015). Synthesis and application of nanoparticles in environmental remediation: A review. Journal of Nanoscience & Nanotechnology, 15(8), 6233-6241. https://doi.org/10.1166/jnn.2015.10836
Wang, Y., & Wu, H. (2019). Development and application of functionalized nanoparticles for water treatment: A review. Environmental Science & Technology, 53(17), 10147-10165. https://doi.org/10.1021/acs.est.9b02795
Wu, J., & Zhang, W. (2017). Application of nanoparticles in biomedical and environmental fields: Recent developments. Journal of Environmental Science and Health, Part C, 35(1), 67-87. https://doi.org/10.1080/10509585.2017.1292447
Zhang, H., Wang, X., & Wang, Z. (2015). Nanoparticles for water treatment and environmental remediation. Journal of Hazardous Materials, 287, 147-156. https://doi.org/10.1016/j.jhazmat.2015.01.037
Zhang, Y., & Liu, Q. (2016). The role of nanoparticles in catalytic reactions: An overview. Catalysis Today, 263, 17-27. https://doi.org/10.1016/j.cattod.2016.02.034

Most read articles by the same author(s)

<< < 1 2