Removal, Recovery and Reuse of Resource in Waste Streams: Challenges, Management and Solutions

Page Numbers: 353-382
Published: 2024-07-31
Digital Object Identifier: 10.58578/kijst.v1i1.3610
Save this to:
Article Metrics:
Viewed : 16 times
Downloaded : 4 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Obadimu C. O Akwa Ibom State University, Nigeria
  • Adelagun R.O. A Federal University Wukari, Taraba State, Nigeria

Abstract

The concept of resource recovery has received immense attention in the last decade from researchers globally due to the stringent discharge limit of nutrients, the provision of an alternative for the highly expensive inorganic fertilizers and as well as reduction of environmental pollution. Resource recovery has given wastewater a new look as a resource from which values can be derived. However, it is faced with an array of issues, ranging from technological feasibilities of recoveries, social-cultural acceptance, economic and business feasibilities, legislative-political challenges, marketability of the recovered products and environmental-ecological challenges.  In this study these challenges are highlighted, considered and eval_uated for possible solutions. The technological aspects are considered in the form of the source of recovery, methods and techniques as wsell as the applicability of the recovered products. A decisive aspect is enlightenment via education to change people’s perspectives and attitudes towards the application of recovered products. Other challenges are also stated and reviewed and solutions are proffer to militate these challenges if properly considered. Finally, as there is not one single, encompassing solution for these challenges as some are localized and geographical, solutions therefore, must be tailor-made to fit and adapt to the challenge at hand. 

Keywords: Resource and Nutrients; Removal and Recovery Technologies; Removal and Recovery Challenges; Resource Reuse Challenges; Management and Solution Practices; Sustainability
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
O, O. C., & A, A. R. (2024). Removal, Recovery and Reuse of Resource in Waste Streams: Challenges, Management and Solutions. Kwaghe International Journal of Sciences and Technology, 1(1), 353-382. https://doi.org/10.58578/kijst.v1i1.3610

References

1.) Kataki, S., West, H., Clarke, M., Baruah, D.C. Phosphorus recovery as struvite from farm, municipal and industrial waste: feedstock suitability, methods and pre-treatments. Waste Manag. 49 (2016a) 437–454.
2.) Asthana, D.K, Asthana, M. Environment: Problems and Solutions. Second Edition, S. Chand Company Ltd. India New Dehli, (2003).
3.) Kataki, S., West, H., Clarke, M., Baruah, D.C. Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour. Conserv. Recycl. 107 (2016b) 142–156.
4.) Paul, D. Assessing the plant availability of a new phosphorus fertilizer formulation. MSc Thesis, University of Natural and Life Sciences, Spain, (2013) 19-24.
5.) Xiao, D., Huang, H., Jiang, Y., Ding, L. Recovery of phosphate from the supernatant of activated sludge pretreated by microwave irradiation through chemical precipitation. Environ. Sci. Pollut. Res (2015), https://doi.org/10.1007/s11356-015-4504-9
6.) Yetilmezsoy, K, Turkdogan, FI, Gunay, A, Yilmaz, T, Kaleli, M. Medicinal plants grown in soil amended with struvite recovered from anaerobically pretreated poultry manure wastewater. J. Anim. Plant Sci. 23 (2013) 261–270.
7.) Trinh, L.T., Duong, C.C., Van Der Steen, P., Lens, P.N. Exploring the potential for wastewater reuse in agriculture as a climate change adaptation measure for Can Tho City, Vietnam. Agricultural Water Manag. 128 (2013) 43-54.
8.) Jan Peter van der Hoek, Rogier Duijff and Otto Reinstra. Nitrogen Recovery from Wastewater: Possibilities, Competition with Other Resources, and Adaptation Pathways Sustainability, 10 (2018) 4605- 4623.
9.) Cordell, D., Rosemarin, A., Schroder, J. J. Smit, A. L. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere, 84 (2011) 747–758.
10.) European Commission. The European Critical Raw Materials Review; European Commission: Brussels, Belgium, (2014), MEMO/14/37726/05/2014
11.) Smith, V.H. Cultural eutrophication of inland, estuarine, and coastal waters. In: Pace ML, Groffman PM (eds) Successes, limitations and frontiers in ecosystem science. Springer-Verlag, New York, USA, (1998) 7–49.
12.) Hynes, H. The enrichment of streams, Eutrophication: causes, consequences, correctives. National Academy of Sciences, Washington, DC, USA, (1969) 188–196.
13.) Smith, V.H., Tilman, G.D., Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on fresh water, marine, and terrestrial ecosystems. Environmental Pollution, 100 (1999) 179–196.
14.) Bukowska, A., Kaliński, T., Koper, M., kostrzewska-szlakowska, I., Kwiatowski, J., Mazur-Marzec, H., Jasser, I. Predicting blooms of toxic cyanobacteria in eutrophic lakes with diverse cyanobacterial communities. Scientific reports, 7(1) (2017) 8342, Http://dx.doi.org/10.1038/s41598-017-08701-8.
15.) Carpenter, S.R., Booth, E.G., Kucharik, C.J., Lathrop, R.C. Extreme daily loads: role in annual phosphorus input to a north temperate lake. Aquatic Sciences, 77(1) (2015) 71-79.
16.) Fontana, l., Albuquerque, A.I.S., Benner, M., Bonotto, D.M.., Sabaris, T.P.P., Pires, M.A.F, Cotrim, M.E.B., Bicudo, D.C. The eutrophication history of a tropical water supply reservoir in Brazil. Journal of paleolimnology, 51(1) (2014) 29-43.
17.) Adelagun, R.O.A. Technological options for phosphate removal and recovery from aqua system: A review. Chemical Sciences Review and Letters, 5 (18) (2016) 19-34.
18.) Correll, D.L. The role of phosphorus in the eutrophication of receiving waters: a review. Journal of Environmental Quality, 27 (1998) 261–266.
19.) Lehman, P.W., Sevier, J., Giulianotti, J., Johnson, M. Sources of oxygen demand in the lower San Joaquin River, California. Estuaries, 27 (2004) 405–418.
20.) Passell, H.D., Dahm, C.N., Bedrick, E.J. Ammonia modeling for assessing potential toxicity to fish species in the Rio Grande, 1989–2002. Ecological Applications, 17 (2007) 2087–2099.
21.) Pellegrin, M., Menniti, A., Stensel, D., Neethling, J.B. WERF nutrient challenge: Challenges and recommendations on achieving low effluent nutrient concentrations with membrane, in: WEF/IWA Nutrient Removal and Recovery. Vancouver, BC, Canada (2013).
22.) Adelagun R.O.A., Oladoja N.A., Ololade, I.A. and Adeyemo A.S. eval_uation of layered double hydroxide from a green biogenic precursor for phosphate removal: Characterisations and Isotherms. American Journal of Bioscience 5 (2017) 2: 13-24.
23.) Knobeloch, L., Salna, B., Hogan, A., Postle, J., Anderson, H. Blue Babies and Nitrate-Contaminated Well Water. Environmental Health Perspectives, 108 (2000) 71.
24.) Ayebo, A., Kross, B.C., VIad, M., Sinca, A. Infant methemoglobinemia in the Transylvania region of Romania. Int. J. Occup. Environ. Health, 3(1) (1997) 20-29.
25.) Lutynski, R., Steczek-Wojdyla, Z., Kroch, S. The concentrations of nitrates and nitrites in food products and environment and the occurrence of acute toxic methemoglobinemias. Przegl. Lek. 53 (4) (1996) 351-355.
26.) Xu, G., Song, P., Reed, P. The relationship between gastric mucosal changes and nitrate intake via drinking water in a high-risk population for gastric cancer in Moping country, China. Eur. J. Cancer Prev. 1(6) (1992) 437-443.
27.) Morales-Suarez-Varela, M.M., Llopis-Gonzales, A., Tejerizo-Perez, M.L. Impact of nitrates in drinking water on cancer mortality in Valencia, Spain. Eur. J. Epidemiol., 11(1) (1995) 15-21.
28.) Yang, C.Y., Cheng, M.F., Tsai, S.S., Hsieh, Y.L. Calcium, magnesium, and nitrate in drinking water and gastric cancer mortality. Jpn J Cancer Res, 89(2) (1998) 124-130.
29.) Barrett, J.H., Parslow, R.C., McKinney, P.A., Law, G.R., Forman, D. Nitrate in drinking water and the incidence of gastric, esophageal, and brain cancer in Yorkshire, England. Cancer Causes Control, 9 (1998) 153-159.
30.) Ward, M.H., Mark, S.D., Cantor, K.P. Weisenburger, D.D., Correa-Villasenor, A., Zahm, S.H. Drinking water nitrate and the risk of non-Hodgkin's lymphoma. Epidemiology 7(5) (1996) 465-471.
31.) Barnett, G.M. Phosphorus forms in animal manure. Bioresource. Technology, 49 (1994) 139-147.
32.) Gong, W., Li, Y., Luo, L., Luo, X., Chen,g X., Liang, H. Application of Struvite-MAP Crystallization Reactor for Treating Cattle Manure Anaerobic Digested Slurry: Nitrogen and Phosphorus Recovery and Crystal Fertilizer Efficiency in Plant Trials. Int. J. Environ. Res. Public Health, 15 (2018) 1397-1405.
33.) Karunanithi, R., Szogi, A.A., Bolan, N., Naidu, R., Loganathan, P., Hunt, P.G., Vanotti, M.B., Saint, C.P., Ok, Y.S., Krishnamurthy, S. Phosphorus recovery and reuse from waste stream. Advances in Agronomy, 131 (2015) 173-250.
34.) Mehta, C.M., Hunter, N.M, Leong, G., Batstone, D.J. The value of wastewater derived struvite as a source of phosphorus fertilizer. Accepted Article, (2018), doi: 10.1002/clen.201700027.
36.) Mehta, C.M., Khubjarb, W.O., Nguyenb, S.T., Batstones, D.J, Technologies to Recover Nutrients from Waste Streams: A critical Review. Critical Reviews in Environmental Science and Technology, (2014) 366-418.
37.) Kabbe, C. Overview of phosphorus recovery from the wastewater stream facilities operating or under construction. In Phosphorus Recovery and Recycling; Springer: Berlin, Germany, (2017).
38.) Cornel, P., C. Schaum. Phosphorus recovery from wastewater: needs, technologies and costs. Water Science & Technology, 59 (6) (2009) 1069–1076.
39.) de-Bashan, L. E., Y. Bashan. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003). Water Research 38 (19) (2004) 4222-4246.
40.) Huang, X., Feng, M., Ni, C., Xie, D., Li, Z. Enhancement of nitrogen and phosphorus removal in landscape water using polymeric ferric sulfate as well as the synergistic effect of four kinds of natural rocks as promoter. Environ Sci. Pollut. Res. Int. 25 (2018) 12859–12867.
41.) Fink, J.R., Inda, A.V., Bavaresco, J., Barrón , V., Torrent, J., Bayer, C .Adsorption and desorption of phosphorus in subtropical soils as affected by management system and mineralogy. Soil Tillage Res., 155 (2016) 62–68.
41a.) E. Shuaibu, E.J. Inam, E.A. Moses, U.A, Ofon, O.K. Fatunla, C.O. Obadimu, N.D. Ibufenang, N.O. Offiong, V.F. Ekpo, T.J. Adeoye, E.L. Udokan, D.P. Fapojuwo (2021) . Prospect of nanosorption and Photocatalysis in remediation of oil spills. Journal of Nigeria Society of Physical Sciences. 1043
41c.) I.N. Etim, P.C. Okafor, R.A. Etiuma, C.O. Obadimu. (2015). Solar photocatalytic degradation of phenol using cocos nucifera (coconut) shells as adsorbent. Journal of Chemistry and biochemistry 3:(1) 35-45
42.) Oladoja, N.A., Adesina, A.O., Adelagun, R.O.A. Gastropod shell column reactor as on-site system for phosphate capture and recovery from aqua system. Journal of Ecological Engineering, 69 (2014) 83–92.
43.) Oladoja, N.A., Adelagun, R.O.A, Ahmad, A.L, Ololade, I.A. Phosphate recovery from aqua culture wastewater using thermally treated gastropod shells. Process Safety and Environmental Protection, 38 (2015) 296-308.
44.) Luo, W., Phan, H.V., Xie, M., Hai, F.I., Price, W.E., Elimelech, M., Nghiem, LD. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: biological stability, membrane fouling, and contaminant removal. Water Res. 109 (2017) 122–134.
45.) Guedes, P., Mateus, E.P., Almeida, .J, Ferreira, A.R., Couto, N., Ribeiro, A.B. Electrodialytic treatment of sewage sludge: current intensity influence on phosphorus recovery and organic contaminants removal. Chem. Eng. J. 306 (2016) 1058–1066.
46.) Berkessa, Y.W., Mereta S.T., Feyisa F.F. Simultaneous removal of nitrate and phosphate from wastewater using solid waste from factory, Applied Water Science, 9 (2019) 28.
47.) Wu, H. A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol., 175 (2015) 594–601
48.) Cordell, D., Rosemarin, A., Schroder, J. J., Smit, A. L. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere, 84 (2011) 747–758.
49.) Kroiss, H., H. Rechberger & L. Egle Phosphorus in Water Quality and Waste Management. (2011).
50.) Oleszkiewicz, J., Barnard, J. Nutrient removal technology in North America and the European Union: A review. Water Qual. Res. J. Canada, 41 (2006) 449–462.
51.) Tchobanoglous, G., M. Abu-Orf, G. Bowden, Pfrang W. Wastewater Engineering: Treatment and Resource Recovery. McGraw-Hill Education, New York. (2014).
52.) Bassin, J.P., Winkler, M..K.H., Kleerebezem, R. M., Dezotti, M., van Loosdrecht, M.C.M. Improved Phosphate Removal by Selective Sludge Discharge in Aerobic Granular Sludge Reactors Biotechnology and Bioengineering, (2012) 342 - 348
53.) Oehmen, A., Lemos, P.C., Carvalho, G., Yuan, Z.G., Keller, J., Blackall, L.L., Reis, M.A.M. Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Research, 41 (11) (2007) 2271-2300.
54.) Sengupta, S, Pandit A,. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer, Water Res. 45 (2011) 3318–3330.
55.) Sengupta, S., Nawaz, T., Beaudry, J. Nitrogen and Phosphorus Recovery from Wastewater. Curr. Pollut. Rep. (2015) 155–166.
56.) Maurer, M.., Muncke, J., Larsen, T.A. Technologies for nitrogen recovery and reuse. In Water Recycling and Resource Recovery in Industry; Lens, P., Pol, L.H.,Wilderer, P.A., Asano, T., Eds.; IWA Publishing: London, UK, (2002) 491–510.
57.) Sartorius, C., Von Horn, J., and Tettenborn, F. Phosphorus recovery from wastewater-expert survey on present use and future potential. Water Environ. Res., 84(4) (2012) 313–322.
58.) Ronteltap, M., Maurer, M., Hausherr, R., Gujer, W., Struvite precipitation from urine influencing factors on particle size. Water Res. 44 (6) (2010) 2038- 2046.
59.) Song, Y.-H., Qiu, G.-L., Yuan, P., Cui, X.-Y., Peng, J.-F., Zeng, P., Duan, L., Xiang, L.-C., Qian, F. Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions. J. Hazard. Mater 190 (13) (2011) 140-149
60.) Guadie, A., Xia, S., Jiang, W., Zhou, L., Zhang, Z., Hermanowicz, S.W., Xu, X., Shen, S. Enhanced struvite recovery from wastewater using a novel cone-inserted fluidized bed reactor. J. Environ. Sci. 26 (4) (2014) 765-774
61.) Rouff, A.A. Sorption of chromium with struvite during phosphorus recovery. Environ. Sci. Technol. 46 (22) (2012) 12493-12501.
62.) Lin, J., Chen, N., Pan, Y. Arsenic incorporation in synthetic struvite (NH4MgPO4.6H2O): a synchrotron XAS and single-crystal EPR study. Environ. Sci. Technol, 47 (22) (2013) 12728-12735.
63.) Horn, J. von. Untersuchungen zur Rückgewinnung von Phosphat aus Überschussschlamm von Kläranlagen mit vermehrt biologischer Phosphatelimination. Dissertation an der Bauhaus-Universität Weimar (2007).
64.) Britton, A. P-Recovery in North America – Ostara´s Pearl Process. Conference, (2009).
65.) Giesen, A. P-Recovery with the Crystalactor process. Conference Baltic 21 on Phosphorus Recycling and Good Agricultural Practice. Berlin, (2009) 28.-30.
66.) Ueno Y, Fujii M. Three years experience of operating and selling recovered struvite from full-scale plant. Environ Technol, 22 (2001)1373–81.
67.) Montag, D. Phosphorus recovery in wastewater treatment Development of a procedure for integration into municipal wastewater treatment plants. (Phosphorrückgewinnung bei der Abwasserreinigung –Entwicklung eines Verfahrens zur Integration in kommunale Kläranlagen). Dissertation from der RheinischWestfälischen Technischen Hochschule Aachen. Available: http://deposit.ddb.de/cgibin/dokserv?idn=98906901xanddok_var=d1anddok_ext=pdfandfilename=989069 01x.pdf. (In German) (2008).
68.) Stumpf, D.; Heinzmann, B.; Schwarz, R.-J., Gnirss, R.; Kraume, M. Induced struvite precipitation in an air lift reactor for phosphorus recovery. Proceedings of the International Conference on Nutrient Recovery from Wastewater Streams. Vancouver, Kanada (2009) 10.-13.
69.) McCahey S., Huang Y., McMullan J.T Sewage sludge Gasification for CHP Applications. Proceedings of IWA specialist conference Biosolids 2003 Wastewater sludge as a resource, 23-25 June 2003, Trondheim, Norway, (2003) 487-493.
70.) Schaum, C. 2007. Procedure for a future sewage sludge treatment: Sewage sludge conditioning and recovery of phosphorus from sewage sludge ash (Verfahren für eine zukünftige Klärschlammbehandlung: Klärschlammkonditionierung und Rückgewinnung von Phosphor aus Klärschlammasche). Instute WAR, Darmstadt. Ref. Adam, C. 2009. Techniques for Precovery
71.) Zimmermann, J.; Dott, W. Recovery of phosphorus from sewage sludge incineration ash by combined bioleaching and bioaccumulation. Proceedings of the International Conference on Nutrient Recovery from Wastewater Streams. Vancouver, Kanada 10.-13. Mai (2009).
72.) Pinnekamp et al. (2007). Studie „Thermische Klärschlammentsorgung in Deutschland sowie Verfahren zur Phosphorrückgewinnung aus Asche“. Bericht an das MUNLV, NRW. Recktenwald, M. (2002). KREPRO – Ein Verfahren zur Reduktion des Schlammvolumens und Rückgewinnung wertvoller Rohstoffe. 66. Darmstädter Seminar Abwassertechnik. Schriftenreihe WAR 147.
73.) Bayerle, N. Phosphorus recycling in Gifhorn with a modified Seaborne process. (2009).
74.) Stenmark, L.; Gidner, A.; Stendahl, K.; Jäferström, S. Recycling of sludge with the Aqua Reci process. Proceedings of the International conference on Nutrient Mamagement in Wastewater Treatment Processes and Recycle Streams held by IWA 19.-21.September 2005 in Krakow, Poland, (2005).
75.) Blöcher, C.; Niewersch, C.; Schröder, H.F.; Gebhardt, W. Gemeinsamer Abschlussbericht des Verbundvorhabens Phoxnan. Bericht an den Projektträger Forschungszentrum Karlsruhe. (2009).
76.) Sievers, M., Bormann, H., Ewert, W. Klärschlammhydrolyse (CAMBI) mit anschließender Stickstoffstrippung und basischer Phosphorextraktion. 75. Darmstädter Seminar Abwassertechnik. Schriftenreihe WAR 167. (2005).
77.) Recktenwald, M. KREPRO – Ein Verfahren zur Reduktion des Schlammvolumens und Rückgewinnung wertvoller Rohstoffe. 66. Darmstädter Seminar Abwassertechnik. Schriftenreihe WAR 147, (2002).
78.) Scheidig, K.; Schaaf, M.; Mallon, J. Profitable recovery of phosphorus from sewage sludge and meat & bone meal by the Mephrec process – a new means of thermal sludge and ash treatment. Proceedings of the International Conference on Nutrient Recovery from Wastewater Streams. Vancouver, Kanada 10.-13. Mai (2009).
79.) Schipper, W.J. and Korving, L. Fullscale plant test using sewage sludge ash as raw material for phosphorus production. Proceedings of International conference on nutrient recovery from wastewater streams, May 10 – 13 2009, Vancouver, Brittish Columbia (2009).
80.) Hermann, L. 2009. Recovery of phosphorus from wastewater treatment. A review. (Rückgewinnung von Phosphor aus der Abwassereinigung. Eine Bestandesaufnahme). UmweltWissen Nr. 0929. Bundesamt für Umwelt (BAFU). Bern. (In German)
81.) Sina Shaddel, Hamidreza Bakhtiary-Davijany, Christian Kabbe, Farbod Dadgar and Stein W. Østerhus 2019 Sustainable Sewage Sludge Management: From Current Practices to Emerging Nutrient Recovery Technologies Sustainability 2019, 11, 3435 2 of 12
82.) Acién, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., and Molina-Grima, E. Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Appl. Microbiol. Biotechnol. 100 (2016) 9013–9022. doi: 10.1007/s00253-016-7835-7.
83.) Acién Fernández F.G., Gómez-Serrano C. and Fernández - Sevilla J.M. Recovery of nutrients from wastewaters using microalgae. Front. Sustain. Food Syst. 2(59) (2018) 1-12. doi: 10.3389/fsufs.2018.00059.
84.) Min, M., Hu, B., Mohr, M. J., Shi, A., Ding, J., Sun, Y. Swine manure based pilot-scale algal biomass production system for fuel production and wastewater treatment–a case study. Appl. Biochem. Biotechnol. . 172 (2014) 1390–1406, doi: 10.1007/s12010-013-0603-6.
85.) Godos, I., de, Blanco, S., García-Encina, P. A., Becares, E., and Muñoz, R. Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour. Technol. 100 (2009) 4332–4339, doi: 10.1016/j.biortech.2009.04.016.
86.) Suschka J., Machnicka A., Poplawski S. Phosphate’s recovery from iron phosphates sludge, Env.Techn. 22 (2001) 1295-1301.
87.) Wolgast M. Rena vatten. Om tankar i kretslopp. Creamon HB Uppsala; (1993) 1–186.
88.) Guadarrama RO, Pichardo NA, Morales-Oliver E. Urine and compost efficiency applied to lettuce under greenhouse conditions in Temixco, Morales, Mexico. In: First International Conference on Ecological Sanitation; 2001.
89.) Suresh CP, Ray B, Hasan MA, Roy B, Leaf N. P and K contents and their correlation with yield of Dwarf Cavendish banana (Musa AAA) in relation to N and K nutrition. Res Crops, 3 (2002)390–7.
90.) Morgan P. Experiments using urine and humus derived from ecological toilets as a source of nutrients for growing crops. Paper presented at Third World Water Forum, 16–23 March 2003.
91.) Rodhe L, Richert SA, Steineck S.Ammonia emissions after application of human urine to clay soil for barley 90 growth. Nutr Cycl Agroecosyst, 68 (2004) 191–8.
92.) Molinos, M., F. Hernandez., R. Sala. Economic feasibility study for wastewater treatment: A cost benefits analysis. Science of the Total Environment 408 (2010) 4396–4402.
93.) Pradhan SK, Nerg A, Sjoblom A, Holopainen JK, Heinonen-Tanski H. Use of human urine fertilizer in cultivation of cabbage (Brassica oleracea)-impacts on chemical, microbial, and flavor quality. J Agric Food Chem, 55 (2007) 8657–63.
94.) Jensen P.K.M., Phuc P.D., Knudsen L.G., Dalsgaard A. and Konradsen F. Hygiene versus fertiliser: the use of human excreta in agriculture—a Vietnamese example. Int. J. Hyg. Environ. Health. 211 (2008) 432–9.
95.) Sridevi G, Srinivasamurthy CA, Bhaskar S, Viswanath S. eval_uation of source separated human urine (ALW) as a source of nutrients for banana cultivation and impact on quality parameter. ARPN J Agric Biol Sci, 4(5) (2009) 44–8.
96.) Winker M, Clemens J, Reich M, Gulyas H, Otterpohl R. Ryegrass uptake of carbamazepine and ibuprofen applied by urine fertilization. Sci Total Environ, 408 (2010) 1902–8.
97.) Jonsson H, Stinzing AR, Vinneras B, Salomon, E., Guidelines on the Use of Urine and Faeces in Crop Production, EcoSanRes Publication Series Report 2004-2, Stockholm Environment Institute, Sweden; 2004.
98.) Heinonen-Tanski H., van Wijk-Sijbesma C. Human excreta for plant production. Bioresour Technol, 96 (2005) 403–11.
99.) Onyeche T.I., Schäfer S. Energy production and savings from sewage sludge treatment. Proceedings of IWA specialist conference Biosolids 2003 Wastewater sludge as a resource, 23-25 June 2003, Trondheim, Norway, (2003) 446-456.
100.) Marchioretto M.M., Bruning H., Hien., N.T.P., Rulkens W.H. Bioleaching and chemical leaching of heavy metals from anaerobically digested sludge. Proceedings of IWA specialist conference Biosolids 2003 Wastewater sludge as a resource, 23-25 June 2003, Trondheim, Norway, (2003) 457-472.
101.) Chauzy J., Crétenot D., Patria L., Fernandes P., Sauvegrain P., Levasseur J-P. Bio THELYS: A new sludge reduction process. Proceedings of IWA specialist conference Biosolids 2003 Wastewater sludge as a resource, 23-25 June 2003, Trondheim, Norway, (2003) 473-480.
102.) Boura P., Katsioti M., Tsakiridis P., Katsiri A. Stabilization/solidification of sewage sludge. Proceedings of IWA specialist conference Biosolids 2003 Wastewater sludge as a resource, 23-25 June 2003, Trondheim, Norway, (2003) 465-472.
103.) Manhem P. and Palmgren T. Kemicond. process at the Käppala wastewater treatment plant, Lidingö, Sweden. Chemical Water and Wastewater Treatment VIII. Editors: H.H. Hahn, E.Hoffmann, H. Ödegaard Proceedings of 11th International Gothenburg Symposium on Chemical Treatment of Water and Wastewater, 8-10 Nov 2004.
104.) Jorgensen, T.C., Weatherley, L.R. Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Res. 37 (8) (2003) 1723-1728.
105.) Wang, X., Wang, Y., Zhang, X., Feng, H., Li, C., Xu, T. Phosphate recovery from excess sludge by conventional electrodialysis (CED) and electrodialysis with bipolar membranes (EDBM). Industrial Eng. Chem. Res. 52 (45) (2013) 15896-15904.
106.) Zhang, Y., Desmidt, E., Van Looveren, A., Pinoy, L., Meesschaert, B., Van der Bruggen, B., Phosphate separation and recovery from wastewater by novel electrodialysis. Environ. Sci. Technol, 47 (11) (2013a.) 5888-5895.
107.) Usman K., Khan S., Ghulam S., Khan M.U., Khan N., Khan M.A., and Khalil S.K. Sewage sludge: An important biological resource for sustainable agriculture and its environmental implications. American Journal of plant sciences 3 (2102) 1708-1721.
108.) SCOPE Germany, Sweden–National objectives for P-recovery announced. SCOPE Newsletter 50: 3 (2003a).
109.) SCOPE Sewage sludge management in Europe. SCOPE Newsletter, 50(3) (2003b) 2-3.
110.) SEPA. Aktionsplan för återföring av fosfor ur avlopp. Report 5214, (in Swedish) (2002)
111.) Miljöbyrån. Utredning över avloppsbehandlingen på Åland och riktlinjer för en förbättrad avloppsbehandling. Miljöbyrån, Ålands Landskapsstyrelse, October 2002.
112.) Cofie O., Adeoti A., Nkansah-Boadu F. and Awuah E. Farmers’ perception and economic benefits of excreta use in southern Ghana. Resources, Conservation and Recycling, 55(2) (2010) 161-166.
113.) Nikiema J., Cofie O., Impraim, R., Adamtey N. Processing of fecal sludge to fertilizer pellets using a low-cost technology in Ghana. Environment and Pollution 2(4) (2013).
114. Mackie Jensen P.K., Pham Duc P., Knudsen, L.G. Hygiene versus fertilizer: The use of human excreta in agriculture—a Vietnamese example. International Journal of Hygiene and Environmental Health 211 (2008) 432-439.
115.) Knudsen L.G., Phuc P.D., Hiep N.T., Samuelson H., Jensen P.K., Dalsgaard A., Raschid-Sally L., Konradsen F. The fear of awful smell: risk perceptions among farmers in Vietnam using wastewater and human excreta in agriculture. Southeast Asian Journal of Tropical Medicine and Public Health 39(2) (2008) 341-352.
116.) Drescher S., Müller C., Kubrom T., Mehari S., Zurbrügg C., Kytzia S. Decentralised composting – assessment of viability through combined material flow analysis and cost accounting. Weimar: Orbit 2006-Biological Waste Management (2006).
117.) Ali, M. (ed.) Sustainable composting case studies and guidelines for developing countries. Leicestershire: Water Engineering and Development Centre, Loughborough University (2004).
118.) Koné D., Cofie O., Zurbrügg C., Gallizzi K., Moser D., Drescher S. and Strauss M. Helminth eggs inactivation efficiency by faecal sludge dewatering and co-composting in tropical climates. Water Research 41(19) (2007) 4397-4402.
119.) Lederer J., Karungi J. and Ogwang F. The potential of wastes to improve nutrient levels in agricultural soils: A material flow analysis case study from Busia District, Uganda. Agriculture Ecosystems and Environment 207 (2015) 2639.
120.) Kasurinen V., Munne P., Mehtonen J., Türkmen A., Seppälä T., Mannio J., Verta M., Äystö L.. Orgaaniset haitta-aineet puhdistamolietteissä. Finnish Environment Institute, Reports No 6/2014
121. Fjäder P.. Yhdyskuntajätevesilietteiden maatalouskäytön ja viherrakentamisen riskit – RUSSOA I-III Loppuraportti. Finnish Environment Institute, Reports No 43/2016
122.) Lewis D. and Gattie D. Pathogen risk from applying sewage sludge to land. Env. Sci Tech. 36 (13) (2002) 286-293.
123.) Schmidt J.E., Angelidaki I., Christensen N., Batstone D.J., Lyberatos G., Stamatelatou K., Lichtfouse E., Elbisser B., Rogers K., Sappin-Didier V., Denaix L., Caria G., Metxger L., Borghi V. and Montcada E. Bioprocessing of sewage sludge for safe recycling on agricultural land –BIOWASTE. Proceedings of IWA specialist conference Biosolids 2003 Wastewater sludge as a resource, 23-25 June 2003, Trondheim, Norway, (2003) 531-538.
124.) Barato G., Fernandes P., Patria L. and Crétenot D. SAPHYR: A new chemical stabilization process. Proceedings of IWA specialist conference Biosolids 2003 Wastewater sludge as a resource, 23-25 June 2003, Trondheim, Norway, (2003) 509-516.
125.) Otoo, M.; Gebrezgabher, S.; Danso, G.; Amewu, S.; Amirova, I. Market adoption and diffusion of fecal sludge-based fertilizer in developing countries: cross country analyses. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). (Resource Recovery and Reuse Series 12), (2018) 68, doi:10.5337/2018.228
126.) Hermann, L. 2009b. P recovery from sewage sludge ashes by thermochemical treatment. Presentation in BALTIC 21 Phosphorus Recycling and Good Agricultural Management Practice, September 2830, 2009.
127.) Molinos, M., F. Hernandez., R. Sala. Economic feasibility study for wastewater treatment: A cost benefit analysis. Science of the Total Environment 408 (2010) 4396–4402.
128.) Rouse J.R., Rothenberger S., and Zurbrugg C. (2008). Marketing compost. A guide for compost producers in low and middle income countries. Switzerland: SANDEC, Swiss Federal Institute of Aquatic Science and Technology (EAWAG).