Basic Reproduction Number and Sensitivity Index Estimates from a Modified Deterministic Model for Nigeria COVID-19 Transmission

Page Numbers: 344-352
Published: 2024-07-31
Digital Object Identifier: 10.58578/kijst.v1i1.3609
Save this to:
Article Metrics:
Viewed : 13 times
Downloaded : 10 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Aromolaran A. Davidson Yaba College of Technology, Yaba, Nigeria
  • Evelyn Nkiruka Okeke Federal University Wukari, Taraba State, Nigeria
  • Ikwuoche John David Federal University Wukari, Taraba State, Nigeria

Abstract

Basic reproduction number and sensitivity index are necessary indices used in most epidemiological research to eval_uate the adequacy of formulated model. In this research, a modified deterministic model (MDM) of Covid-19 outbreak in Nigeria is formulated. The R0 is estimated alongside the SI to determine the acceptability of the formulated MDM. The analytic results showed that an R0 of 0.0000295 is obtained which imply the spread of the virus is under control. The SI result showed that 14 parameters of the MDM were sensitive whereby 8 of the parameters SI are positive while the remaining 6 parameters [natural mortality rate (μ), Proportion of asymptomatic that did not transit to symptomatic (v), natural mortality rate plus Covid-19 death induced (μ1), rate of vaccination (γ), rate of symptomatic being transferred to isolation (ϒ), transition of undetected exposed to quarantine (ф)] SI are negative. The SI result clearly showed that the significant negative indices parameters are responsible for reducing the R0 and enhanced the decline of the Covid-19 virus in Nigeria.

Keywords: Covid-19; Basic Reproduction Number; Sensitivity Index; Deterministic Model
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Davidson, A. A., Okeke, E. N., & David, I. J. (2024). Basic Reproduction Number and Sensitivity Index Estimates from a Modified Deterministic Model for Nigeria COVID-19 Transmission. Kwaghe International Journal of Sciences and Technology, 1(1), 344-352. https://doi.org/10.58578/kijst.v1i1.3609

References

Anggriani, N., Ndii, M., Amelia, R. & Suryaningrat, W. (2021). A Mathematical COVID-19 model considering Asymptomatic and Symptomatic classes with waning immunity, Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2021.04.104
Delamater, P. L, Street, E. J., Leslie, T. F., Yang, Y. T. and Jacobsen, K. H. (2019). Complexity of the basic reproduction numbers (Ro). Emergency Infectious Disease, 25(1), 1-4.
Evensen G., Amezcua J., Bocquet M., Carrassi A., Farchi A., Fowler A., Houtekamer P.L., Jones C.K., Vossepoel F.C., et al. (2021). An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation. Foundations of Data Science, 3(3), 413-477. https://doi.org/10.3934/fods.2021001
Giesecke, J..(2017). Modern infectious disease epidemiology. CRC Press.
Hilton, J., & Keeling, M. J. (2020). Estimation of country-level basic reproductive ratios for novel Coronavirus (SARS-CoV-2/COVID-19) using synthetic contact matrices. PLoS Computational Biology, 16(7), e1008031. https://doi.org/10.1016/j.cca.2020.05.044 0009-8981/.
Iyaniwura, S. A., Rabiu, M., David, J. F., & Kong, J. D. (2022). The basic reproduction number of COVID-19 across Africa. Plos one, 17(2), e0264455.
Lim, J. S., Cho, S. I., Ryu, S., & Pak, S. I. (2020). Interpretation of the basic and effective reproduction number. Journal of Preventive Medicine and Public Health, 53(6), 405.
Najafimehr, H., Ali, K. M., Safari, S., Yousefifard, M., & Hosseini, M. (2020). Estimation of basic reproduction number for COVID‐19 and the reasons for its differences. International Journal of Clinical Practice, 74(8).
Niño-Torres, D., Ríos-Gutiérrez, A., Arunachalam, V., Ohajunwa, C., & Seshaiyer, P. (2022). Stochastic modeling, analysis, and simulation of the COVID-19 pandemic with explicit behavioral changes in Bogotá: A case study. Infectious Disease Modelling, 7(1), 199-211.
Ohajunwa C., Kumar K., & Seshaiyer P. (2020). Mathematical modeling, analysis, and simulation of the COVID-19 pandemic with explicit and implicit behavioral changes. Journal of computational and Mathematical Biophysics. https://doi.org/10.1515/cmb-2020-0113
Peter, O. J., Shaikh, A. S., Ibrahim, M. O., Nisar, K. S., Baleanu, D., Khan, I., & Abioye, A. I.(2021). Analysis and dynamics of fractional order mathematical model of COVID-19 in Nigeria using atangana-baleanu operator. Journal of Computers, Materials & Continua, 66(2). https://doi.org/32604/cmc.2020.012314
Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J. Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79, 214-232,
Rodrigues, H. S. M. Teresa T. Monteiro, M. T. T. and Torres, D. F. M. (2013). Sensitivity Analysis in a Dengue Epidemiological Model, Conference Papers in Mathematics, vol. 2013, Article ID 721406, http://dx.doi.org/10.1155/2013/721406
Shaw C.L., Kennedy D.A. (2021): What the reproductive number Ro can and cannot tell us about COVID-19 dynamics. Theoretical population biology, 137, 2-9. https://doi.org/10.1016/j.tpb.2020.12.003
Tesfaye, A.W., Satana T.S. (2021): Stochastic model of the transmission dynamics of COVID-19 pandemic. Advances in Differential Equations. https://doi.org/10.1186/s13662-021-03597-1
Tilahun, G. T. & Alemneh, H. T. (2021): Mathematical Modeling and Optimal Control Analysis of COVID-19 in Ethiopia. Journal of Interdisciplinary Mathematics. https://doi.org/10.1080/09720502.2021.1874086