Review on DNA Modification for Drug Tartgeting Purposes

Page Numbers: 76-103
Published: 2024-07-19
Digital Object Identifier: 10.58578/kijst.v1i1.3400
Save this to:
Article Metrics:
Viewed : 30 times
Downloaded : 15 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Solomon Godiya Marvelous Federal University Wukari, Taraba State, Nigeria
  • Isaac John Umaru Federal University Wukari, Taraba State, Nigeria
  • Kerenhappuch Isaac Umaru Saint Monica University Higher Institute Buea, South West Cameroon, Cameroon

Abstract

DNA (deoxyribonucleic acid) modification for drug targeting purposes is a rapidly advancing field that holds great promise for revolutionizing the way we approach disease treatment, offering precise and personalized approaches to tackle diseases. This seminar work provides an overview of the potential application of DNA modification for drug targeting. The seminar work begins by introducing nucleic acid and its types, structure of DNA and DNA modification, the concept of DNA modification and its significance in the context of drug targeting. It highlights the potential of DNA modification techniques, such as gene editing and epigenetic modifications. It also explores the application of DNA modification for drug targeting purposes. It discusses the use of gene editing technologies, such as CRISPR-Cas9, in correcting genetic mutations associated with inherited disorders or targeting disease-causing genes. By utilizing DNA modification techniques, drug targeting can be fine-tuned to enhance efficacy and minimize side effects. In general, this seminar report emphasizes the great potential of DNA modification for drug targeting purposes. By precisely modifying DNA, scientists can develop targeted therapies, correct genetic mutations, and optimize drug responses.

Keywords: DNA; Modification; Drug; Targeting; Purpose
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Marvelous, S. G., Umaru, I. J., & Umaru, K. I. (2024). Review on DNA Modification for Drug Tartgeting Purposes. Kwaghe International Journal of Sciences and Technology, 1(1), 76-103. https://doi.org/10.58578/kijst.v1i1.3400

References

Archibald J. M. (2015). Endosymbiosis and Eukaryotic Cell Evolution. Current biology: CB, 25(19), R911–R921.
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (December 2015). "Discovery and resupply of pharmacologically active plant-derived natural products: A review". Biotechnol Adv. 33 (8): 1582–614.
Bacolla, A., Cooper, D. N., & Vasquez, K. M. (2013). DNA structure matters. Genome medicine, 5(6), 51.
Berndsen, C. E., & Denu, J. M. (2008). Catalysis and substrate selection by histone/protein lysine acetyltransferases. Current opinion in structural biology, 18(6), 682–689.
Camden, A. J., Walsh, S. M., Suk, S. H., & Silverman, S. K. (2016). DNA Oligonucleotide 3'-Phosphorylation by a DNA Enzyme. Biochemistry, 55(18), 2671–2676.
Chaires, J. B., Dattagupta, N., & Crothers, D. M. (1982). Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: equilibrium binding studies on interaction of daunomycin with deoxyribonucleic acid. Biochemistry, 21(17), 3933–3940.
Chaudhry, R., & Khaddour, K. (2023). Biochemistry, DNA Replication. In StatPearls. StatPearls Publishing.
Corriente Córdoba, Federico (1997). Dictionary of Andalusi Arabic. Leiden: Brill Publishers. p. 130. ISBN 978-90-04-09846-6.
Damaschun, G., Damaschun, H., Misselwitz, R., Pospelov, V. A., Zalenskaya, I. A., Zirwer, D., Müller, J. J., & Vorobev, V. I. (1983). How many base-pairs per turn does DNA have in solution and in chromatin? An answer from wide-angle X-ray scattering. Biomedica biochimica acta, 42(6), 697–703.
Dhuri, K., Bechtold, C., Quijano, E., Pham, H., Gupta, A., Vikram, A., & Bahal, R. (2020). Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. Journal of clinical medicine, 9(6), 2004.
Ekundayo, B., & Bleichert, F. (2019). Origins of DNA replication. PLoS genetics. journal.pgen, 15(9), e1008320.
Excedr. (2022). DNA modification explained. Retrieved from https://www.excedr.com/resources/dna-modification-explained/
Ghannam JY, Wang J, Jan A. Biochemistry, DNA Structure. [Updated 2022 Jun 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538241/
Gribbin, J. (2002). The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. New York: Random House. p. 546. ISBN 0812967887.
H.P., Rang; M.M, Dale; J.M., Ritter; R.J., Flower; G., Henderson (2011). "What is Pharmacology". Rang & Dale's pharmacology (7 ed.). Edinburgh: Churchill Livingstone. p. 1. ISBN 978-0-7020-3471-8.
Hallgrímsson, B., & Hall, B. K. (2011). Epigenetics: Linking genotype and phenotype in development and evolution. University of California Press.
Hong, C. A., Lee, S. H., Kim, J. S., Park, J. W., Bae, K. H., Mok, H., Park, T. G., & Lee, H. (2011). Gene silencing by siRNA microhydrogels via polymeric nanoscale condensation. Journal of the American Chemical Society, 133(35), 13914–13917.
Jayachandran, Muthukumaran & Fei, Zhaoliang & Qu, Shen. (2022). Genetic advancements in obesity management and CRISPR–Cas9-based gene editing system. Molecular and Cellular Biochemistry. 478.
Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science (New York, N.Y.), 293(5532), 1074–1080.
Jin, B., Li, Y., & Robertson, K. D. (2011). DNA methylation: superior or subordinate in the epigenetic hierarchy?. Genes & cancer, 2(6), 607–617.
Kim, K. R., Kim, H. Y., Lee, Y. D., Ha, J. S., Kang, J. H., Jeong, H., Bang, D., Ko, Y. T., Kim, S., Lee, H., & Ahn, D. R. (2016). Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. Journal of controlled release : official journal of the Controlled Release Society, 243, 121–131.
Kouzarides T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705.
Kumar, S., Chinnusamy, V., & Mohapatra, T. (2018). Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond. Frontiers in genetics, 9, 640.
Lakna (2017). Difference Between Prokaryotic and Eukaryotic DNA.
Lehman I. R. (1974). DNA ligase: structure, mechanism, and function. Science (New York, N.Y.), 186(4166), 790–797.
Libretexts. (2022). 23.1b: Characteristics of Eukaryotic DNA. Retrieved from https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/23%3A_Protists/23.01%3A_Eukaryotic_Origins/23.1B%3A_Characteristics_of_Eukaryotic_DNA
Liyanage, V., Jarmasz, J., Murugeshan, N., Del Bigio, M., Rastegar, M., & Davie, J. (2014). DNA modifications: Function and applications in normal and disease states. Biology, 3(4), 670–723.
Loscalzo, J., & Handy, D. E. (2014). Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulmonary circulation, 4(2), 169–174.
Ma, J., & Wang, M. D. (2016). DNA supercoiling during transcription. Biophysical reviews, 8(1), 75–87.
Mcnamara, Karrina & Tofail, Syed. (2017). Nanoparticles in biomedical applications. Advances in Physics: X. 2. 54-88.
Mellert, H. S., & McMahon, S. B. (2009). Biochemical pathways that regulate acetyltransferase and deacetylase activity in mammalian cells. Trends in biochemical sciences, 34(11), 571–578.
Monga Mehta, Rachna & Singh, Abhishek & Bokkon, Istvan & Mallick, Birendra. (2016). REM Sleep and Its Loss-associated Epigenetic Regulation with Reference to Noradrenaline in Particular. Current Neuropharmacology. 14. 28-40.
Nagwa. (n.d.). Lesson explainer: DNA in prokaryotes biology. Nagwa. https://www.nagwa.com/en/explainers/546169603010/
O'Donnell, M., Langston, L., & Stillman, B. (2013). Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harbor perspectives in biology, 5(7), a010108.
Online education kit: Understanding the human genome project. (n.d.). Retrieved from https://www.genome.gov/25019879/online-education-kit-understanding-the-human-genome-project (accessed on 5 june 2023)
Razin, A.; Cedar, H. (1977). Distribution of 5-methylcytosine in chromatin. Proc. Natl. Acad. Sci. USA, 74, 2725–2728.
Robertson K. D. (2005). DNA methylation and human disease. Nature reviews. Genetics, 6(8), 597–610.
Rojo, J., Sousa-Herves, A., & Mascaraque, A. (2017). Perspectives of carbohydrates in drug discovery. Comprehensive Medicinal Chemistry III, 577–610.
Rudolph F. B. (1994). The biochemistry and physiology of nucleotides. The Journal of nutrition, 124(1), 124S–127S.
Schüller, V. J., Heidegger, S., Sandholzer, N., Nickels, P. C., Suhartha, N. A., Endres, S., Bourquin, C., & Liedl, T. (2011). Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS nano, 5(12), 9696–9702.
Seto, E., & Yoshida, M. (2014). Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harbor perspectives in biology, 6(4), a018713.
Simpson, B., Tupper, C., & Al Aboud, N. M. (2023). Genetics, DNA Packaging. In StatPearls. StatPearls Publishing.
Sun, W., Ji, W., Hall, J. M., Hu, Q., Wang, C., Beisel, C. L., & Gu, Z. (2015). Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angewandte Chemie (International ed. in English), 54(41), 12029–12033.
Szabat, M., Pedzinski, T., Czapik, T., Kierzek, E., & Kierzek, R. (2015). Structural Aspects of the Antiparallel and Parallel Duplexes Formed by DNA, 2'-O-Methyl RNA and RNA Oligonucleotides. PloS one, 10(11), e0143354.
Tambuyzer, E., Vandendriessche, B., Austin, C. P., Brooks, P. J., Larsson, K., Miller Needleman, K. I., Valentine, J., Davies, K., Groft, S. C., Preti, R., Oprea, T. I., & Prunotto, M. (2020). Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nature reviews. Drug discovery, 19(2), 93–111.
The nobel prize in physiology or medicine 1968. NobelPrize.org. (n.d.). https://www.nobelprize.org/prizes/medicine/1968/summary/
Travers, A., & Muskhelishvili, G. (2015). DNA structure and function. The FEBS journal, 282(12), 2279–2295.
Tupper KW (2012). "Psychoactive substances and the English language: "Drugs," discourses, and public policy". Contemporary Drug Problems. 39 (3): 461–492.
Wang, T., Liu, Y., Wu, Q., Lou, B., & Liu, Z. (2022). DNA nanostructures for stimuli-responsive drug delivery. Smart Materials in Medicine, 3, 66–84.
Watson, J. D., & Crick, F. H. (1953). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 171(4356), 737–738.
Weng, Y., Xiao, H., Zhang, J., Liang, X. J., & Huang, Y. (2019). RNAi therapeutic and its innovative biotechnological evolution. Biotechnology adva

Most read articles by the same author(s)

<< < 1 2 3 4 5