Recent Application of Enzymes and Microbes in Bioremediation

Page Numbers: 901-919
Published: 2024-09-09
Digital Object Identifier: 10.58578/ajbmbr.v1i2.3818
Save this to:
Article Metrics:
Viewed : 19 times
Downloaded : 3 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Emmanuel Afen Eneji Federal University Wukari, Taraba State, Nigeria
  • Ezeonu Chukwuma Stephen Federal University Wukari, Taraba State, Nigeria
  • Joseph Ikwebe Federal University Wukari, Taraba State, Nigeria

Abstract

Chemicals used in industry and military, along with poor waste management, cause soil, water, and air pollution. Pollutants pose health risks due to their resistance to degradation processes. Conventional methods are costly and generate secondary pollution. Bioremediation offers eco-friendly alternatives using enzymes and nanotechnology for efficient pollutant removal either in situ or ex sit. Microorganisms play a crucial role in bioremediation by converting toxic elements into less harmful compounds through processes like mineralization. They can survive in diverse environments and utilize various substrates, making them efficient in removing pollutants. Microbes utilize mechanisms like immobilization and mobilization to remove pollutants from the environment, with different types of bacteria specializing in degrading specific pollutants. Enzyme engineering involves manipulating biomolecules and processes for biotechnological applications. Two main strategies are rational design, requiring prior knowledge, and directed evolution, mimicking natural selection in a controlled manner. Rational design combines microorganisms or enzymes for specific reactions, while directed evolution creates gene variants through random mutagenesis for desired characteristics. Both methods aim to improve enzymes for bioremediation applications.

Keywords: Microorganisms; Microbes; Enzymes; Bioremediation; Pollutant
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Eneji, E. A., Stephen, E. C., & Ikwebe, J. (2024). Recent Application of Enzymes and Microbes in Bioremediation. African Journal of Biochemistry and Molecular Biology Research, 1(2), 901-919. https://doi.org/10.58578/ajbmbr.v1i2.3818

References

Abioye, O. P., Ezugwu, B. U., Aransiola, S. A., & Ojeba, M. I. (2020). Phycoremediation of water contaminated with arsenic (As), cadmium (Cd) and lead (Pb) from a mining site in Minna, Nigeria. European Journal of Biological Research, 10(1), 35-44.
Aditi, P. K. G., & Suneetha, V. (2015). The role of algae in degradation of petroleum wastes-a study.
Ali, N., Liu, W., Zeb, A., Shi, R., Lian, Y., Wang, Q., ... & Liu, J. (2023). Environmental fate, aging, toxicity and potential remediation strategies of microplastics in soil environment: Current progress and future perspectives. Science of The Total Environment, 167785.
Ambreen, S., Yasmin, A., & Aziz, S. (2020). Isolation and characterization of organophosphorus phosphatases from Bacillus thuringiensis MB497 capable of degrading Chlorpyrifos, Triazophos and Dimethoate. Heliyon, 6(7).
Anboo, S., Lau, S. Y., Kansedo, J., Yap, P. S., Hadibarata, T., Jeevanandam, J., & Kamaruddin, A. H. (2022). Recent advancements in enzyme‐incorporated nanomaterials: Synthesis, mechanistic formation, and applications. Biotechnology and Bioengineering, 119(10), 2609-2638.
Ang, E. L., Zhao, H., & Obbard, J. P. (2005). Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme and microbial technology, 37(5), 487-496.
Ayangbenro, A. S., & Babalola, O. O. (2018). Metal (loid) bioremediation: strategies employed by microbial polymers. Sustainability, 10(9), 3028.
Ayele, A., Getachew, D., Kamaraj, M., & Suresh, A. (2021). Phycoremediation of synthetic dyes: an effective and eco‐friendly algal technology for the dye abatement. Journal of Chemistry, 2021(1), 9923643.
Ayilara, M. S., & Babalola, O. O. (2023). Bioremediation of environmental wastes: the role of microorganisms. Frontiers in Agronomy, 5, 1183691.
Badamasi, M., Rabiu, S., Abdullahi, B. A., Abdulkarim, B., Taofik, A. B., Aliyu, H., & Dahiru, Y. (2024). Assessment of Phycoremediation Potential of Chlorella sorokiniana Wastewater Treatment: Analysis of Biochemical Component Changes. Sahel Journal of Life Sciences FUDMA, 2(1), 43-50.
Bala, S., Garg, D., Thirumalesh, B. V., Sharma, M., Sridhar, K., Inbaraj, B. S., & Tripathi, M. (2022). Recent strategies for bioremediation of emerging pollutants: a review for a green and sustainable environment. Toxics, 10(8), 484.
Barriault, D., Plante, M. M., & Sylvestre, M. (2002). Family shuffling of a targeted bphA region to engineer biphenyl dioxygenase. Journal of bacteriology, 184(14), 3794-3800.
Bhatia, S. K. (2021). Wastewater based microbial biorefinery for bioenergy production. Sustainability, 13(16), 9214.
Carmichael, A. B., & Wong, L. L. (2001). Protein engineering of Bacillus megaterium CYP102: the oxidation of polycyclic aromatic hydrocarbons. European Journal of Biochemistry, 268(10), 3117-3125.
Chen-Goodspeed, M., Sogorb, M. A., Wu, F., Hong, S. B., & Raushel, F. M. (2001). Structural determinants of the substrate and stereochemical specificity of phosphotriesterase. Biochemistry, 40(5), 1325-1331.
Cruces, F., Rivera, P., & Urrutia, R. (2010). Observaciones y comentarios acerca de la diatomea Stephanodiscus minutulus (Kützing) Cleve & Möller (Bacillariophyceae) encontrada por primera vez en Chile en sedimentos recolectados en el Lago Laja. Gayana. Botánica, 67(1), 12-18.
Cui, D., Li, G., Zhao, M., & Han, S. (2014). Decolourization of azo dyes by a newly isolated Klebsiella sp. strain Y3, and effects of various factors on biodegradation. Biotechnology & Biotechnological Equipment, 28(3), 478-486.
Daneshvar, E., Wicker, R. J., Show, P. L., & Bhatnagar, A. (2022). Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization–A review. Chemical Engineering Journal, 427, 130884.
Desai, S. A. (2017). Isolation and characterization dye degrading bacteria for detoxification of dark red 2B. Bioscience Discovery, 8(3), 426-431.
Dong, H., Huang, L., Zhao, L., Zeng, Q., Liu, X., Sheng, Y., ... & Chen, H. (2022). A critical review of mineral–microbe interaction and co-evolution: mechanisms and applications. National science review, 9(10), nwac128.
Dym, O., Aggarwal, N., Ashani, Y., Leader, H., Albeck, S., Unger, T., ... & Sussman, J. L. (2023). The impact of molecular variants, crystallization conditions and the space group on ligand–protein complexes: a case study on bacterial phosphotriesterase. Acta Crystallographica Section D: Structural Biology, 79(11).
Elyamine, A. M., Kan, J., Meng, S., Tao, P., Wang, H., & Hu, Z. (2021). Aerobic and anaerobic bacterial and fungal degradation of pyrene: mechanism pathway including biochemical reaction and catabolic genes. International journal of molecular sciences, 22(15), 8202.
Firozjaei, S. A. A., Latifi, A. M., Khodi, S., Abolmaali, S., & Choopani, A. (2015). A review on biodegradation of toxic organophosphate compounds. Journal of Applied Biotechnology Reports, 2(2), 215-224.
Franciscon, E., Grossman, M. J., Paschoal, J. A. R., Reyes, F. G. R., & Durrant, L. R. (2012). Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. SpringerPlus, 1, 1-10.
Furukawa, K., Suenaga, H., & Goto, M. (2004). Biphenyl dioxygenases: functional versatilities and directed evolution. Journal of bacteriology, 186(16), 5189-5196.
Harford-Cross, C. F., Carmichael, A. B., Allan, F. K., England, P. A., Rouch, D. A., & Wong, L. L. (2000). Protein engineering of cytochrome P450cam (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. Protein Engineering, 13(2), 121-128.
Hong, S. B., & Raushel, F. M. (1999). Stereochemical preferences for chiral substrates by the bacterial phosphotriesterase. Chemico-biological interactions, 119, 225-234.
Huy, N. D., Ha, D. T. T., Khoo, K. S., Lan, P. T. N., Quang, H. T., Loc, N. H., ... & Show, P. L. (2020). Synthetic dyes removal by Fusarium oxysporum HUIB02 and stimulation effect on laccase accumulation. Environmental Technology & Innovation, 19, 101027.
Jamee, R., & Siddique, R. (2019). Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach. European journal of microbiology and immunology, 9(4), 114-118.
Karimi-Maleh, H., Shafieizadeh, M., Taher, M. A., Opoku, F., Kiarii, E. M., Govender, P. P., ... & Orooji, Y. (2020). The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. Journal of Molecular Liquids, 298, 112040.
Kathi, S., & Mahmoud, A. E. D. (2024). Trends in Effective Removal of Emerging Contaminants from Wastewater: A Comprehensive Review. Desalination and Water Treatment, 100258.
Katyal, P., Chu, S., & Montclare, J. K. (2020). Enhancing organophosphate hydrolase efficacy via protein engineering and immobilization strategies. Annals of the New York Academy of Sciences, 1480(1), 54-72.
Kochhar, N., Shrivastava, S., Ghosh, A., Rawat, V. S., Sodhi, K. K., & Kumar, M. (2022). Perspectives on the microorganism of extreme environments and their applications. Current Research in Microbial Sciences, 3, 100134.
Kotoula, D., Iliopoulou, A., Irakleous-Palaiologou, E., Gatidou, G., Aloupi, M., Antonopoulou, P., ... & Stasinakis, A. S. (2020). Municipal wastewater treatment by combining in series microalgae Chlorella sorokiniana and macrophyte Lemna minor: Preliminary results. Journal of Cleaner Production, 271, 122704.
Kumar, A., Dixit, U., Singh, K., Gupta, S. P., & Beg, M. S. J. (2021). Structure and properties of dyes and pigments. Dyes and pigments-novel applications and waste treatment, 131.
Kumar, V., Garg, V. K., Kumar, S., & Biswas, J. K. (Eds.). (2022). Omics for environmental engineering and microbiology systems. CRC Press.
Lane, M. D., & Seelig, B. (2014). Advances in the directed evolution of proteins. Current opinion in chemical biology, 22, 129-136.
Mahmood, A., Bilal, B., Naeem, Z., & Iram, S. (2021). Physical, chemical, and biological remediation techniques for textile effluents in context with developed and developing countries. Rhizobiont in bioremediation of hazardous waste, 409-441.
Mishra, S., Nayak, J. K., & Maiti, A. (2020). Bacteria-mediated bio-degradation of reactive azo dyes coupled with bio-energy generation from model wastewater. Clean Technologies and Environmental Policy, 22, 651-667.
Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 752, 142168.
Mousavi, S. M., Hashemi, S. A., Iman Moezzi, S. M., Ravan, N., Gholami, A., Lai, C. W., ... & Behbudi, G. (2021). Recent advances in enzymes for the bioremediation of pollutants. Biochemistry Research International, 2021(1), 5599204.
Mustapha, M. U., & Halimoon, N. (2015). Microorganisms and biosorption of heavy metals in the environment: a review paper. J. Microb. Biochem. Technol, 7(5), 253-256.
Nagamune, T. (2017). Biomolecular engineering for nanobio/bionanotechnology. Nano convergence, 4(1), 9.
Ndochinwa, O. G., Wang, Q. Y., Amadi, O. C., Nwagu, T. N., Nnamchi, C. I., Okeke, E. S., & Moneke, A. N. (2024). Current status and emerging frontiers in enzyme engineering: An industrial perspective. Heliyon.
Nithiya Arumugam, N. A., Shreeshivadasan Chelliapan, S. C., Hesam Kamyab, H. K., Sathiabama Thirugnana, S. T., Norazli Othman, N. O., & Noor Shawal Nasri, N. S. N. (2018). Treatment of wastewater using seaweed: a reviewHan, P., Lu, Q., Fan, L., & Zhou, W. (2019). A review on the use of microalgae for sustainable aquaculture. Applied sciences, 9(11), 2377.
Padhye, L. P., Srivastava, P., Jasemizad, T., Bolan, S., Hou, D., Shaheen, S. M., ... & Bolan, N. (2023). Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. Journal of Hazardous Materials, 455, 131575.
Panwar, P., Mahajan, P., & Kaushal, J. (2023). Microbial bioremediation of Azo dyes: An environmentally sustainable technology. Remediation Journal, 33(2), 151-165.
Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Frontiers in Microbiology, 11, 562813.
Prasad, S. S., & Aikat, K. (2014). Study of bio-degradation and bio-decolourization of azo dye by Enterobacter sp. SXCR. Environmental technology, 35(8), 956-965.
Rafeeq, H., Afsheen, N., Rafique, S., Arshad, A., Intisar, M., Hussain, A., ... & Iqbal, H. M. (2023). Genetically engineered microorganisms for environmental remediation. Chemosphere, 310, 136751.
Razzak, S. A., Faruque, M. O., Alsheikh, Z., Alsheikhmohamad, L., Alkuroud, D., Alfayez, A., ... & Hossain, M. M. (2022). A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environmental Advances, 7, 100168.
Rima, S. A. J., Paul, G. K., Islam, S., Akhtar-E-Ekram, M., Zaman, S., Saleh, M. A., & Uddin, M. S. (2022). Efficacy of Pseudomonas sp. and Bacillus sp. in textile dye degradation: a combined study on molecular identification, growth optimization, and comparative degradation. Journal of Hazardous Materials Letters, 3, 100068.
Sani, Z. M. (2023). Bacillus Species with Dye-remediation Potential–A Mini Review. UMYU Journal of Microbiology Research (UJMR), 8(2), 212-226.
Sari, I. P., & Simarani, K. (2019). Decolorization of selected azo dye by Lysinibacillus fusiformis W1B6: Biodegradation optimization, isotherm, and kinetic study biosorption mechanism. Adsorption Science & Technology, 37(5-6), 492-508.
Shi, Y., Yang, Z., Xing, L., Zhang, X., Li, X., & Zhang, D. (2021). Recent advances in the biodegradation of azo dyes. World Journal of Microbiology and Biotechnology, 37, 1-18.
Siddiki, S. Y. A., Uddin, M. N., Mofijur, M., Fattah, I. M. R., Ong, H. C., Lam, S. S., ... & Ahmed, S. F. (2021). Theoretical calculation of biogas production and greenhouse gas emission reduction potential of livestock, poultry and slaughterhouse waste in Bangladesh. Journal of Environmental Chemical Engineering, 9(3), 105204.
Srinivasan, A., & Viraraghavan, T. (2010). Decolorization of dye wastewaters by biosorbents: a review. Journal of environmental management, 91(10), 1915-1929.
Steliga, T., Wojtowicz, K., Kapusta, P., & Brzeszcz, J. (2020). Assessment of biodegradation efficiency of polychlorinated biphenyls (PCBs) and petroleum hydrocarbons (TPH) in soil using three individual bacterial strains and their mixed culture. Molecules, 25(3), 709.
Stoddard, E. G., Nag, S., Martin, J., Tyrrell, K. J., Gibbins, T., Anderson, K. A., ... & Smith, J. N. (2021). Exposure to an environmental mixture of polycyclic aromatic hydrocarbons induces hepatic cytochrome P450 enzymes in mice. Chemical research in toxicology, 34(9), 2145-2156.
Tripathi, M., Singh, P., Singh, R., Bala, S., Pathak, N., Singh, S., ... & Singh, P. K. (2023). Microbial biosorbent for remediation of dyes and heavy metals pollution: a green strategy for sustainable environment. Frontiers in Microbiology, 14, 1168954.
Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P., & Narasimha, G. (2014). Fungal laccases and their applications in bioremediation. Enzyme research, 2014(1), 163242.
Wróbel, M., Śliwakowski, W., Kowalczyk, P., Kramkowski, K., & Dobrzyński, J. (2023). Bioremediation of heavy metals by the genus Bacillus. International Journal of Environmental Research and Public Health, 20(6), 4964.
Zhang, X., Wu, R., Song, L., Lin, Y., Lin, M., Cao, Z., ... & Mo, Y. (2009). Molecular dynamics simulations of the detoxification of paraoxon catalyzed by phosphotriesterase. Journal of computational chemistry, 30(15), 2388-2401.