Recent Advances in Biopesticides: A Review of Efficacy and Environmental Impact

Page Numbers: 706-725
Published: 2024-07-31
Digital Object Identifier: 10.58578/ajbmbr.v1i1.3706
Save this to:
Article Metrics:
Viewed : 26 times
Downloaded : 10 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Ruslan Shamsuddeen Federal University Wukari, Taraba State, Nigeria
  • Twan Sale Mathew Federal University Wukari, Taraba State, Nigeria
  • Mohammed Haladu Federal University Wukari, Taraba State, Nigeria
  • Kabiru Bashir Ahmad Federal University Lokoja, Kogi State, Nigeria
  • Ansar Bilyaminu Adam Federal University Wukari, Taraba State, Nigeria
  • Musa Yahaya Abubakar Federal University Wukari, Taraba State, Nigeria

Abstract

Biopesticides are a vital component of sustainable agriculture, offering a safer alternative to synthetic pesticides. This review provides an overview of recent advances in biopesticides, including their types, efficacy, and environmental impact. Microbial, plant-based, and biochemical biopesticides have shown promising results in controlling pests and diseases. While efficacy is comparable to synthetic pesticides, biopesticides have a more favorable environmental profile, with reduced toxicity to non-target organisms and biodegradability. However, challenges persist in registration, regulation, and public acceptance. Future directions include genetic engineering, nanotechnology, and integrated pest management strategies. This review highlights the potential of biopesticides in reducing the environmental footprint of agriculture and ensuring food security.

Keywords: Biopesticides; Sustainable agriculture; Efficacy; Environmental impact; Microbial biopesticides; Plant-based biopesticides
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Shamsuddeen, R., Mathew, T. S., Haladu, M., Ahmad, K. B., Adam, A. B., & Abubakar, M. Y. (2024). Recent Advances in Biopesticides: A Review of Efficacy and Environmental Impact. African Journal of Biochemistry and Molecular Biology Research, 1(1), 706-725. https://doi.org/10.58578/ajbmbr.v1i1.3706

References

Abtew, A., Subramanian, S., Cheseto, X., Kreiter, S., Garzia, G.T. and Martin, T. (2015) Repellency of Plant Extracts against the Legume Flower Thrips Megalurothrips sjostedti (Thysanoptera: Thripidae). Insects, 6, 608-625. https://doi.org/10.3390/insects6030608.
Alengebawy A., Abdelkhalek S. T., Qureshi S. R., Wang M.-Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxicology 9:42. 10.3390/toxics9030042
Ali M.A., Doaa S.M., El-Sayed H.S., Asmaa M.E. Antifeedant activity and some biochemical effects of garlic and lemon essential oils on Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) J. Entomol. Zool. 2017;5:1476–1482.
Anitha, A. and Rabeeth, M. (2009) Control of Fusarium Wilt by Bioformulation of Streptomyces griseus in the Green House Condition. African Journal of Basic and Applied Sciences, 1-2, 9-14.
Arena J.P., Liu K.K., Paress P.S., Frazier E.G., Cully D.F., Mrozik H., Schaeffer J.M. (1995). The mechanism of action of avermectins in Caenorhabditis elegans: Correlation between activation of glutamate-sensitive chloride current, membrane binding, and biological activity. J. Parasitol. 2:286–294. doi: 10.2307/3283936.
Aw, K.M.S. and Hue, S.M. (2017) Mode of Infection of Metarhizium spp. Fungus and Their Potential as Biological Control Agents. Journal of Fungi, 30, 1-20. https://doi.org/10.3390/jof3020030.
Bailey G. W., White J. L. (1970). “Factors influencing the adsorption, desorption, and movement of pesticides in soil,” in Single Pesticide Volume: The Triazine Herbicides, eds Gunther F. A., Gunther J. D. (New York, NY: Springer; ), 29–92. 10.1007/978-1-4615-8464-3_4
Barbosa, F.S., Leite, G.L.D., Martins, E.R., D’avila, V.A. and Cerqueira, V.M. (2013) Medicinal Plant Extracts on the Control of Diabrotica speciosa (Coleoptera: Chrysomelidae). Brazilian Journal of Medicinal Plants, 1, 142-149.
Beric, T., Koji, M., Stankovi, S., Topisirovi, L., Degrassi, G., Myers, M., Venturi, V. and Fira, D. (2012) Antimicrobial Activity of Bacillus sp. Natural Isolates and their Potential use in the Biocontrol of Phytopathogenic Bacteria. Food Technology and Biotechnology, 1, 25-31.
Beulke S., Brown C. D., Fryer C. J., Van Beinum W. (2004). Influence of kinetic sorption and diffusion on pesticide movement through aggregated soils. Chemo 57 481–490. 10.1016/j.chemosphere.2004.06.026
Bhatt P., Bhatt K., Sharma A., Zhang W., Mishra S., Chen S. (2021c). Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit. Rev. Biotechnol. 41 317–338. 10.1080/07388551.2020.1853032
Bhatt P., Huang Y., Rene E. R., Kumar A. J., Chen S. (2020b). Mechanism of allethrin biodegradation by a newly isolated Sphingomonas trueperi strain CW3 from wastewater sludge. Bioresour. Technol. 305:123074. 10.1016/j.biortech.2020.123074
Birech, R., Bernhard, F. and Joseph, M. (2006) Towards Reducing Synthetic Pesticides Imports in Favour of Locally Available Botanicals in Kenya. Proceedings International Agricultural Research for Development, Bonn, 8-12.
Calaf G. M. (2021). Role of organophosphorous pesticides and acetylcholine in breast carcinogenesis. Semin. Can. Biol. 76 206–217. 10.1016/j.semcancer.2021.03.016
Chang J.H., Choi J.Y., Jin B.R., Roh J.Y., Olszewski J.A., Seo S.J., O’Reilly D.R., Je Y.H. An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J. Invertebr. Pathol. 2003;84:30–37. doi: 10.1016/S0022-2011(03)00121-6.
Conde-Avila V., Ortega-Martínez L. D., Loera O., El Kassis E. G., Dávila J. G., Valenzuela C. M., et al. (2021). Pesticides degradation by immobilised microorganisms. Int. J. Environ. Anal.Chem. 101 2975–3005. 10.1080/03067319.2020.1715375
Costa J.A.V., Freitas B.C.B., Cruz C.G., Silveira J., Morais M.G. (2019).Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. J. Environ. Sci. Health Part B. 54:366–375. doi: 10.1080/03601234.2019.1571366.
Damalas, C.A. and Koutroubas, S.D. (2015) Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics, 1, 1-10.
Dannon H.F., Dannon A.E., Douro-kpindou O.K., Zinsou A.V., Houndete A.T., Toffa-Mehinto J., Elegbede I.A.T.M., Olou B.D., Tamo M. (2020). Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. J. Cotton Res. 2020;3:24. doi: 10.1186/s42397-020-00061-5.
Devi, K.B., Pavankumar, P. and Bhadraiah, B. (2017) Antifungal Activity of Plant Extracts against Post-Harvest Fungal Pathogens. International Journal of Current Microbiology and Applied Sciences, 6, 669-679. https://doi.org/10.20546/ijcmas.2017.601.081.
Duan C.B., Du Y., Hou X., Yan N., Dong W., Mao X., Zhang Z. (2016). Chemical Basis of the Fungicidal Activity of Tobacco Extracts against Valsa mali. Molecules. 2016;21:1743. doi: 10.3390/molecules21121743.
Elgar M.A., Zhang D., Wang Q., Wittwer B., Thi Pham H., Johnson T.L., Freelance C.B., Coquilleau M. (2018). Insect Antennal Morphology: The Evolution of Diverse Solutions to Odorant Perception. Yale J. Biol. Med. 2018;91:457–469.
EPA Ingredients Used in Pesticide Products: Pesticides. What Are Biopesticides? (accessed on 10 May 2021)]; Available online: https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides
Essiedu J.A., Adepoju F.O., Ivantsova M.N. (2020). Benefits and limitations in using biopesticides: A review; Proceedings of the VII International Young Researchers’ Conference—Physics, Technology, Innovations (PTI-2020); Ekaterinburg, Russia. 18–22 May 2020; p. 080002.
Feduchi E., Cosín M., Carrasco L. Mildiomycin (1985). A nucleoside antibiotic that inhibits protein synthesis. J. Antibiot. 38:415–419. doi: 10.7164/antibiotics.38.415.
Franco R., Li S., Rodriguez-Rocha H., Burns M., Panayiotidis M. I. (2010). Molecular mechanisms of pesticide-induced neurotoxicity: relevance to Parkinson’s disease. Chem. Biol. Interact. 188 289–300. 10.1016/j.cbi.2010.06.003
Gasic, S. and Tanovic, B. (2013) Biopesticide Formulations, Possibility of Application and Future Trends. Journal Pesticides and Phytomedicine (Belgrade), 2, 97-102.
Gerson, U. (2014) Pest Control by Mites (acari): Present and Future. Acarologia, 4, 371-394.
Gevao B., Semple K. T., Jones K. C. (2000). Bound pesticide residues in soils: a review. Environ. Pol 108 3–14. 10.1016/s0269-7491(99)00197-9
Gomiero T. (2018). Food quality assessment in organic vs. conventional agricultural produce: Findings and issues. Appl. Soil Ecol. 123:714–728. doi: 10.1016/j.apsoil.2017.10.014.
Gupta S., Gajbhiye V. T. (2002). Effect of concentration, moisture and soil type on the dissipation of flufenacet from soil. Chemo 47 901–906. 10.1016/S0045-6535(02)00017-6
Gupta V. K., Pathak A., Siddiqi N. J., Sharma B. (2016). Carbofuran modulating functions of acetylcholinesterase from rat brain in vitro. Adv. Biol. 2016:3760967. 10.1155/2016/3760967
Gupta, S. and Dikshit, A.K. (2010) Biopesticides: An Ecofriendly Approach for Pest Control. Journal of Biopesticides, 1, 186-188.
Gwinn K.D. (2018). Bioactive Natural Products in Plant Disease Control. In: Attaur R., editor. Studies in Natural Products Chemistry. Volume 56. Elsevier Inc.; Amsterdam, the Netherlands: 2018. pp. 229–246.
Halder J., Rai A.B., Kodandaram M.H. (2013). Compatibility of Neem Oil and Different Entomopathogens for the Management of Major Vegetable Sucking Pests. Natl. Acad. Sci. Lett. 2013;36:19–25. doi: 10.1007/s40009-012-0091-1.
Hussain, F., Abid, M., Shaukat, S., Farzana, S. and Akbar, M. (2015) Anti-Fungal Activity of Some Medicinal Plants on Different Pathogenic Fungi. Pakistan Journal of Botany, 5, 2009-2013.
Islam, M.R., Jeong, Y.T., Lee, Y.S. and Song, C.H. (2012) Isolation and Identification of Antifungal Compounds from Bacillus subtilis C9 Inhibiting the Growth of Plant Pathogenic Fungi. Mycobiology, 1, 59-66. https://doi.org/10.5941/MYCO.2012.40.1.059.
Islam, M.R., Mondal, C., Hossain, I. and Meah, B.M. (2014) Compost Tea as Soil Drench: An Alternative Approach to Control Bacterial Wilt in Brinjal. Archives of Phytopathology and Plant Protection, 12, 1475-1488. https://doi.org/10.1080/03235408.2013.847654
Javaid, M.K., Ashiq, M. and Tahir, M. (2016) Potential of Biological Agents in Decontamination of Agricultural Soil.https://doi.org/10.1155/2016/1598325
Jayaraj R., Megha P., Sreedev P. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip.Toxicol. 9:, 90–100. 10.1515/intox-2016-0012
Kalyabina V. P., Esimbekova E. N., Kopylova K. V., Kratasyuk V. A. (2021). Pesticides: formulants, distribution pathways and effects on human health–a review. Toxicol. Rep. 8 1179–1192. 10.1016/j.toxrep.2021.06.004
Karimi, K., Amini, J., Harighi, B. and Bahramnejad, B. (2012) eval_uation of Biocontrol Potential of Pseudomonas and Bacillus spp against Fusarium Wilt of Chickpea. Australian Journal of Crop Science, 6, 695-703.
Kawalekar, J.S. (2013) Role of Biofertilizers and Biopesticides for Sustainable Agriculture. Journal of Bio Innovation, 2, 73-78.
Khater, H.F. (2012) Prospects of Botanical Biopesticides in Insect Pest Management. Pharmacologia, 12, 641-656.
Khatri N., Tyagi S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 8 23–39. 10.1080/21553769.2014.933716
Kim H., Kim D.-U., Lee H., Yun J., Ka J.-O. (2017). Syntrophic biodegradation of propoxur by Pseudaminobacter sp. SP1a and Nocardioides sp. SP1b isolated from agricultural soil. Int. Biodeteri. Biodegra. 118 1–9. 10.1016/j.ibiod.2017.01.024
Koul, O. (2011) Microbial Biopesticides: Opportunities and Challenges. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 6, 056. http://www.cabi.org/cabreviews.
Kumar M., Yadav A. N., Saxena R., Paul D., Tomar R. S. (2021). Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocata. Agric. Biotechnol. 31:101883. 10.1016/j.bcab.2020.101883
Kumar, S. and Singh, A. (2015) Biopesticides: Present Status and the Future Prospects. Journal of Fertilizers & Pesticides, 2, 1-2. https://doi.org/10.4172/2471-2728.1000e129.
Lanzoni, A., Martelli, R. and Pezzi, F. (2017) Mechanical Release of Phytoseiulus persimilis and Amblyseius swirskii on Protected Crops. Bulletin of Insectology, 2, 245-250.
Leng, P., Zhang, Z., Pan, G. and Zhao, M. (2011) Applications and Development Trends in Biopesticides. African Journal of Biotechnology, 86, 19864-19873.
Liu X., Cao A., Yan D., Ouyang C., Wang Q., Li Y. (2021) Overview of mechanisms and uses of biopesticides. Int. J. Pest Manag. ;67:65–72. doi: 10.1080/09670874.2019.1664789.
Liu Y., Mo R., Tang F., Fu Y., Guo Y. (2015). Influence of different formulations on chlorpyrifos behavior and risk assessment in bamboo forest of China. Environ. Sci. Pol. Res. 22 20245–20254. 10.1007/s11356-015-5272-2
Magierowicz K., Górska-Drabik E., Golan K. (2020). Effects of plant extracts and essential oils on the Inc.behavior of Acrobasis advenella (Zinck.) caterpillars and females. J. Plant Dis. Prot. 2020;127:63–71. doi: 10.1007/s41348-019-00275-z.
Marie L., Sylvain P., Benoit G., Maurice M., Gwenaël I. (2017). Degradation and transport of the chiral herbicide s-metolachlor at the catchment scale: combining observation scales and analytical approaches. Environ. Sci. Technol. 51 13231–13240. 10.1021/acs.est.7b02297
Marsala R. Z., Capri E., Russo E., Bisagni M., Colla R., Lucini L., et al. (2020). First eval_uation of pesticides occurrence in groundwater of Tidone Valley, an area with intensive viticulture. Sci. Tot. Environ. 736:139730. 10.1016/j.scitotenv.2020.139730
Minz, S., Samuel, C.O. and Tripathi, C.S. (2012) The Effect of Plant Extracts on the Growth of Wilt Causing Fungi Fusarium oxysporum. Journal of Pharmacy and Biological Sciences, 1, 13-16. https://doi.org/10.9790/3008-0411316.
Mordue A.J., Morgan E.D., Nisbet A.J. (2005). Azadirachtin, a Natural Product in Insect Control. In: Gilbert L.I., editor. Comprehensive Molecular Insect Science. Elsevier; Amsterdam, The Netherlands: 2005. pp. 117–135.
Muzemu, S., Mvumi, B.M., Nyirenda, S.P.M., Sileshi, G.W., Sola, P., Chikukura, L., Kamanula, J.F., Belmain, S.R. and Stevenson, P.C. (2011) Pesticidal Effects of Indigenous Plant Extracts against Rape Aphids and Tomato Red Spider Mites. African Crop Science Conference Proceedings, 10, 171-173.
Nawaz, M., Mabubu, J.I. and Hua, H. (2016) Current Status and Advancement of Biopesticides: Microbial and Botanical Pesticides. Journal of Entomology and Zoology Studies, 2, 241-246.
Nefzi, A., Abdallah, B.A.R., Jabnoun-Khiareddine, H., Saidiana-Medimagh, S., Haouala, R. and Danmi-Remadi, M. (2016) Antifungal Activity of Aqueous and Organic Extracts from Withania somnifera L. against Fusarium oxysporum f.sp. radicislycopersici. Journal of Microbial and Biochemical Technology, 8, 144-150. Mizubuti, G.S.E., Junior, V.L. and Forbes, G.A. (2007) Management of Late Blight with Alternative Products. Pest Technology, 2, 106-116.
Ngegba, P.M., Kanneh, S.M., Bayon, M.S., Ndoko, E.J. and Musa, P.D. (2018) Fungicidal Effect of Three Plants Extracts in Control of Four Phytopathogenic Fungi of Tomato (Lycopersicum esculentum L.) Fruit Rot. International Journal of Environment, Agriculture and Biotechnology, 1, 112-117. https://doi.org/10.22161/ijeab/3.1.14.
Nia, B., Frah, N. and Azoui, I. (2015) Insecticidal Activity of Three Plants Extracts against Myzuspersicae (Sulzer, 1776) and Their Phytochemical Screening. Acta Agriculturae Slovenica, 2, 261-267. https://doi.org/10.14720/aas.2015.105.2.09.
Okunlola, A.I. and Akinrinnola, O. (2014) Effectiveness of Botanical Formulations in Vegetable Production and Bio-Diversity Preservation in Ondo State, Nigeria. Journal of Horticulture and Forestry, 1, 6-13.
Okunlola, A.I. and Akinrinnola, O. (2014) Effectiveness of Botanical Formulations in Vegetable Production and Bio-Diversity Preservation in Ondo State, Nigeria. Journal of Horticulture and Forestry, 1, 6-13. Kumar, S. and Singh, A. (2015).
Oyedokun, A.V., Anikwe, J.C., Okelana, F.A., Mokwunye, I.U. and Azeez, O.M. (2011) Pesticidal Efficacy of Three Tropical Herbal Plants’ Leaf Extracts against Macrotermes bellicosus, an Emerging Pest of Cocoa, Theobroma cacao L. Journal of Biopesticides, 2, 131-137.
Park, J. P., Gyung, J. C., Kyoung, S. J., He, K. L., Heung, T. K., Kwang, Y. C. and Kim, J. C. (2005) Antifungal Activity against Plant Pathogenic Fungi of Chaetoviridins Isolated from Chaetomium globosum. FEMS Microbiology Letters, 252, 309-313.
Parker K.M., Barragán B.V., van Leeuwen D.M., Lever M.A., Mateescu B., Sander M. (2019). Environmental Fate of RNA Interference Pesticides: Adsorption and Degradation of Double-Stranded RNA Molecules in Agricultural Soils. Environ. Sci. Technol. 53:3027–3036. doi: 10.1021/acs.est.8b05576.
Parte, S.G., Kharat, A.S., Mohekar, A.D., Chavan, J.A., Jagtap, A.A., Mohite, A.K. and Patil, R.N. (2015) Efficacy of Plant Extracts for Management of Cimex lectularius (Bed Bug). International Journal of Pure and Applied Bioscience, 3, 506-508.
Parween T., Jan S. Pesticides and environmental ecology. In: Parween T., Jan S., editors. (2019). Ecophysiology of Pesticides. Academic Press; Cambridge, MA, USA: 2019. pp. 1–38.
Patil K., Matsumura F., Boush G. (1970). Degradation of endrin, aldrin, and DDT by soil microorganisms. Appl. Microbiol. 19 879–881. 10.1128/am.19.5.879-881.1970
Patrice, A.K., Séka, K., Francis, Y.K., Théophile, A.S., Fatoumata, F. and Diallo, H.A. (2017) Effects of Three Aqueous Plant Extracts in the Control of Fungi Associated with Post-harvest of Yam (Dioscorea alata). International Journal of Agronomy and Agricultural Research, 3, 77-87.
Pereira V. J., da Cunha J. P. A. R., de Morais T. P., Ribeiro-Oliveira J. P., de Morais J. B. (2016). Physical-chemical properties of pesticides: concepts, applications, and interactions with the environment. Biosci. J. 32 627–641.
Pignatello J. J., Xing B. (1995). Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30 1–11. 10.1021/es940683g
Pokhrel B., Gong P., Wang X., Chen M., Wang C., Gao S. (2018). Distribution, sources, and air–soil exchange of OCPs, PCBs and PAHs in urban soils of Nepal. Chemo 200 532–541. 10.1016/j.chemosphere.2018.01.119
Qin F., Gao Y. X., Guo B. Y., Xu P., Li J. Z., Wang H. L. (2014). Environmental behavior of benalaxyl and furalaxyl enantiomers in agricultural soils. J. Environ. Sci. Health Part B 49 738–746. 10.1080/03601234.2014.929482
Ranglová K., Lakatos G.E., Câmara Manoel J.A., Grivalský T., Suárez Estrella F., Acién Fernández F.G., Molnár Z., Ördög V., Masojídek J. (2021). Growth biostimulant and biopesticide activity of the MACC-1 Chlorella strain cultivated outdoors in inorganic medium and wastewater. Algal Res. 53:102136. doi: 10.1016/j.algal.2020.102136.
Rizvi, S.A.H., Hussain, S., Rehman, U.S., Jaffar, S. and Rehman, M.F.U. (2016) Efficacy of Ecofriendly Botanical Extracts of Ginger (Zingiber officinale), Garlic (Allium sativum) and Tobacco (Nicotiana tabacum L.) for the Control of Cabbage Looper (Trichoplusiabinotalis) under Agro Ecological Conditions of Peshawar. Pakistan. Journal of Entomology and Zoology Studies, 1, 88-90.
Roberts T. R. (1984). Non-extractable pesticide residues in soils and plants. Pur. Appl. Chem. 56 945–956. 10.1351/pac198456070945
Różański L. (1992). Przemiany pestycydów w organizmach żywych i środowisku. Warszawa: PWRiL.
Saberi F., Marzban R., Ardjmand M., Pajoum S.F., Tavakoli O. (2020). Optimization of culture media to enhance the ability of local Bacillus thuringiensis var. tenebrionis. J. Saudi Soc. Agric. Sci. 19:468–475. doi: 10.1016/j.jssas.2020.08.004.
Schorderet W.S., Kaminski K.P., Perret J.-L., Leroy P., Mazurov A., Peitsch M.C., Ivanov N.V., Hoeng J. (2019). Antiparasitic properties of leaf extracts derived from selected Nicotiana species and Nicotiana tabacum varieties. Food Chem. Toxicol. 2019;132:110660. doi: 10.1016/j.fct.2019.110660.
Schuwirth B.S., Day J.M., Hau C.W., Janssen G.R., Dahlberg A.E., Cate J.H., Vila-Sanjurjo (2006). Structural analysis of kasugamycin inhibition of translation. Nat. Struct. Mol. Biol. 13:879–886. doi: 10.1038/nsmb1150.
Selim, H.M.M., Gomaa, N.M. and Essa, A.M.M. (2016) Antagonistic Effect of Endophytic Bacteria against Some Phytopathogens. Egyptian Journal of Botany, 1, 74-81.
Semeniuc, C.A., Pop, C.R. and Rotar, A.M. (2017) Antibacterial Activity and Interactions of Plant Essential Oil Combinations gainst Gram-Positive and Gram-Negative Bacteria. Journal of Food and Drug Analysis, 25, 403-408.
Sesan, T.E., Enache, E., Iacomi, M., Oprea, M., Oancea, F. and Iacomi, C. (2015) Antifungal Activity of some Plant Extract against Botrytis cinerea Pers. in the Blackcurrant Crop (Ribes nigrum L). Acta Scientiarum Polonorum Technologia Alimentaria, 1, 29-43.
Shah, J.A., Inayatullah, M., Sohail, K., Shah, S.F., Shah, S., Iqbal, T. and Usman, M. (2013) Efficacy of Botanical Extracts and a Chemical Pesticide against Tomato Fruit Worm, Helicoverpa armigera. Sarhad Journal of Agriculture, 1, 93-96.
Shiberu, T. and Getu, E. (2016). Assessment of Selected Botanical Extracts against Liriomyza Species (Diptera: Agromyzidae) on Tomato under Glasshouse Condition. International Journal of Fauna and Biological Studies, 1, 87-90.
Sidhu, S.H., Kumar, V. and Madhu, M.R. (2017) Eco-Friendly Management of Root-Knot Nematode, Meloidogyne javanica in Okra (Abelmoschus esculentus) Crop. International Journal of Pure and Applied Bioscience, 1, 569-574. https://doi.org/10.18782/2320-7051.2507
Silva V., Mol H. G., Zomer P., Tienstra M., Ritsema C. J., Geissen V. (2019). Pesticide residues in European agricultural soils–A hidden reality unfolded. Sci. Total. Environ. 653 1532–1545. 10.1016/j.scitotenv.2018.10.441
Singh B. K., Kuhad R. C., Singh A., Lal R., Tripathi K. (1999). Biochemical and molecular basis of pesticide degradation by microorganisms. Crit. Rev. Biotechnol. 19 197–225. 10.1080/0738-859991229242
Srijita, D. (2015) Biopesticides: An Eco-friendly Approach for Pest Control. World Journal of Pharmacy and Pharmaceutical Sciences, 6, 250-265.
Steffens K., Larsbo M., Moeys J., Jarvis N., Lewan E. (2013). Predicting pesticide leaching under climate change: Importance of model structure and parameter uncertainty. Agri. Ecol. Environ. 172 24–34. 10.1016/j.agee.2013.03.018
Stoneman, B. (2010) Challenges to Commercialization of Biopesticides. Proceedings Microbial Biocontrol of Arthropods, Weeds and Plant Pathogens: Risks, Benefits and Challenges. National Conservation Training Center, Shepherdstown, WV.
Sumitra, A., Kanojia, A.K., Kumar, A., Mogha, N. and Sahu, V. (2014) Biopesticide Formulation to Control Tomato Lepidopteran Pest Menace. Current Science, 7, 1051-1057.
Svidritskiy E., Ling C., Ermolenko D.N., Korostelev A.A. (2013). Blasticidin S inhibits translation by trapping deformed tRNA on the ribosome. Proc. Natl. Acad. Sci. USA. 2013 110:12283–12288.doi: 10.1073/pnas.1304922110.
Tudi M., Daniel Ruan H., Wang L., Lyu J., Sadler R., Connell D., et al. (2021). Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 18:1112. 10.3390/ijerph18031112
Wagh V., Mukate S., Muley A., Kadam A., Panaskar D., Varade A. (2020). Study of groundwater contamination and drinking suitability in basaltic terrain of Maharashtra, India through PIG and multivariate statistical techniques. J. Water Sup. Res. Technol. Aquat. 69 398–414. 10.2166/aqua.2020.108
Šunjka D, Mechora Š. (2022). An Alternative Source of Biopesticides and Improvement in Their Formulation-Recent Advances. Plants (Basel). 2022 Nov 20;11(22):3172. doi: 10.3390/plants11223172. PMID: 36432901; PMCID: PMC9694139.

Most read articles by the same author(s)

<< < 1 2