Heavy Metals Tolerant Bacteria Detection from Selected Scrap Metal Dump Site: A Review

Page Numbers: 144-157
Published: 2024-07-27
Digital Object Identifier: 10.58578/ajbmbr.v1i1.3468
Save this to:
Article Metrics:
Viewed : 30 times
Downloaded : 13 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Haladu Mahmud Muhammad Ahmadu Bello University, Zaria, Nigeria
  • Mukhtar Umar Nasir Federal University Dutse, Jigawa, Nigeria
  • Ansar Bilyaminu Adam Federal University Wukari, Taraba State, Nigeria
  • Ruslan Shamsuddeen Federal University Wukari, Taraba State, Nigeria

Abstract

This study aimed to detect heavy-tolerant bacteria from selected scrap metal dump sites. Heavy metals are the major setbacks to many forms of life and their presence in the ecosystem rapid increase of heavy metal contamination is due to anthropogenic activities, rampant scrap metal waste disposal, and other industrial wastes. Bacteria were found to be among the many microorganisms that can tolerate many heavy metals and can as well reduce their toxicity or even convert them to useful resources. This study aims to detect the heavy metal concentration and the bacterial species capable of tolerating the identified heavy metals from selected metal dump sites. The heavy metals content of the soil samples was analyzed using Atomic Absorption Spectrophotometry (AAS). Standard methods of enrichment culture and colony count were used to isolate a total of 12 bacterial species. Using 16S rRNA gene sequence-based molecular systematics, the 12 isolates were identified and grouped into one genus (Bacillus). It was observed from the results that the heavy metals (Pb, Zn, Cu, Cd, and Cr) concentrations found to be high above the WHO permissible limits (Copper-2.0, Zinc-3.0, Lead-0.4, Chromium-0.05, and Cadmium-0.03). Therefore, the bacterial isolates capable of surviving at such levels of heavy metals could have a potential application in the bioremediation and bioleaching of heavy metal contaminants.

Keywords: Heavy Metals; Bacteria; Anthropogenic; Scrap Metal Dumpsite
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Muhammad, H. M., Nasir, M. U., Adam, A. B., & Shamsuddeen, R. (2024). Heavy Metals Tolerant Bacteria Detection from Selected Scrap Metal Dump Site: A Review. African Journal of Biochemistry and Molecular Biology Research, 1(1), 144-157. https://doi.org/10.58578/ajbmbr.v1i1.3468

References

Abou-sharab, R., Angle, J., Delorme, T., Chaney, R., Berkum, P., Moawad, H., Ghanem, Khaled, & Ghozlan, H. (2003). Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytologist, 158, 219–224. https://doi.org/10.1046/j.1469-8137.2003.00721.x
Aguilar-López, R., Domínguez-Bocanegra, A., & Torres-Muñoz, J. (2013). Biosorption of Cadmium (II), Lead (II) and Nickel (II) by Spirulina Maxima. The International Journal of Sciences, 2, 45–55.
Akpoveta, O. V., Osakwe, S. A., Okoh, B. E., & Otuya, B. O. (2010). Physicochemical characteristics and levels of some heavy metals in soils around metal scrap dumps in some parts of Delta State, Nigeria. Journal of applied sciences and environmental management, 14(4).
Akpoveta, O., Osakwe, S., Okoh, B., & Otuya, B. (2011). Physicochemical Characteristics and Levels of Some Heavy Metals in Soils around Metal Scrap Dumps in Some Parts of Delta State, Nigeria. Journal of Applied Sciences and Environmental Management, 14(4). https://doi.org/10.4314/jasem.v14i4.63258
Aliyu Haliru, H. (2014). Heavy Metal Concentration Levels in Soil at Lake Geriyo Irrigation Site, Yola, Adamawa State, North Eastern Nigeria. International Journal of Environmental Monitoring and Analysis, 2(2), 106. https://doi.org/10.11648/j.ijema.20140202.17
Angaye, T. C. N., Angaye, W. W. T., Oyinke, G. N., & Konmeze, O. (2016). Environmental Impact of Scrap Metal Dumpsites on Vegetation, Soil and Groundwater in Yenagoa Metropolis, Nigeria. 4(2), 31–36.
Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479. https://doi.org/10.1016/S0043-1354(98)00475-8
Baker, B. J., & Banfield, J. F. (2003). Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44(2), 139–152. https://doi.org/10.1016/S0168-6496(03)00028-X
Bankole, S. O., Adekunle, E. A., Oyewunmi, R. V., & Olomola, D. B. ISOLATION AND IDENTIFICATION OF HEAVY METAL TOLERANT BACTERIA FROM ARAPAJA DUMPSITE, IBADAN, OYO STATE.
Bazrafshan, E., Mohammadi, L., Ansari-Moghaddam, A., & Mahvi, A. H. (2015). Heavy metals removal from aqueous environments by electrocoagulation process - A systematic review. Journal of Environmental Health Science and Engineering, 13(1). https://doi.org/10.1186/s40201-015-0233-8
Berlanga, M. (2010). Brock Biology of Microorganisms (11th ed). Michael T. Madigan, John M. Martinko (eds). International Microbiology; Vol. 8, Núm. 2 (2005); 149-150.
Brehm-Stecher, B., & Johnson, E. (2004). Single-Cell Microbiology: Tools, Technologies, and Applications. Microbiology and Molecular Biology Reviews : MMBR, 68, 538–559. https://doi.org/10.1128/MMBR.68.3.538-559.2004
Chien, C., Kuo, Y., Chen, C. C., Hung, C., Yeh, C., & Yeh, W. (2008). Microbial diversity of soil bacteria in agricultural fields contaminated with heavy metals. Journal of Environmental Sciences (China), 20, 359–363. https://doi.org/10.1016/S1001-0742(08)60056-X
Curtis, T., Sloan, W., & Scannell, J. (2002). Curtis TP, Sloan WT, Scannell JW.. Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci 99: 10494-10499. Proceedings of the National Academy of Sciences of the United States of America, 99, 10494–10499. https://doi.org/10.1073/pnas.142680199
Dell’Amico, E., Cavalca, L., & Vincenza, A. (2005). Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiology Ecology, 52, 153–162. https://doi.org/10.1016/j.femsec.2004.11.005
Dykhuizen, D. (1998). Santa Rosalia revisited: Why are there so many species of bacteria? Antonie Van Leeuwenhoek 73:25-33. Antonie van Leeuwenhoek, 73, 25–33. https://doi.org/10.1023/A:1000665216662
Eghomwanre, A. F., Nwosisi, M. C., & Osarenitor, O. (2019). Assessment of heavy metals pollution of surface soil from scrap yards in Benin City, Nigeria. Open Access Journal of Waste Management and Xenobiotics, 2, 132-183.
Ekong, E. B., Jaar, B., & Weaver, V. M. (2007). Lead-related nephrotoxicity: A review of the epidemiologic evidence. Kidney International, 70, 2074–2084. https://doi.org/10.1038/sj.ki.5001809
Errasquín, E., & Vázquez, C. (2003). Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere, 50, 137–143. https://doi.org/10.1016/S0045-6535(02)00485-X
Fashola, M. O., Ngole-jeme, V. M., & Babalola, O. O. (2016). Heavy Metal Pollution from Gold Mines : Environmental Effects and Bacterial Strategies for Resistance. https://doi.org/10.3390/ijerph13111047
Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A., Catalano, A. The effects of cadmium toxicity. International Journal of Environmental Research and Public Health 2020, 17(11), 3782
Guo, Z., Mallavarapu, M., Beer, M., Ming, H., Rahman, M. M., Wu, W., & Naidu, R. (2009). Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Bioresource Technology, 100, 3831–3836. https://doi.org/10.1016/j.biortech.2009.02.043
Haladu, M.M, Yaro, R.S; Rabi’u, S.; Auwalu, S; Nuhu, F.D (2024): Isolation and Molecular Characterization of Heavy Metal Tolerant Bacteria from Kofar Ruwa Scrap Metal Dump Site in Kano Metropolis Dutse Journal of Pure and Applied Sciences (DUJOPAS), Vol. 10 No. 1a March 2024
Hussaini, A., Ali, A. F., & Abdullahi, B. A. (2021). Effects of Using Industrial Wastewater for Irrigation on Heavy Metals in Soils and Crops: a Case of Kano Metropolis, Nigeria. Journal of Chemical Society of Nigeria, 46(6), 931–939. https://doi.org/10.46602/jcsn.v46i5.674
Kehrer, J., Tipple, T., Robertson, J. D., & Smith, C. V. (2015). Free Radicals and Reactive Oxygen Species. In Comprehensive Toxicology (Vol. 1). https://doi.org/10.1016/B978-0-12-801238-3.01895-X
Kobya, M., Demirbas, P. E., Senturk, E., & Ince, M. (2005). Adsorption of Heavy Metal Ions from Aqueous Solution by Activated Carbon Prepared from Apricot Stone. Bioresource Technology, 96, 1518–1521. https://doi.org/10.1016/j.biortech.2004.12.005
Kumar, M., Kumar, K., & Das, P. (2021). Study on road traffic congestion: A review (pp. 230–240). https://doi.org/10.1201/9781003193838-43
Lee, S. W., Glickmann, E., & Cooksey, D. A. (2001). The chromosomal locus for cadmium resistance in Pseudomonas putida consists of a cadmium-transporting ATPase and a MerR family response regulator. Applied and Environmental Microbiology, 67(4), 1437–1444. https://doi.org/10.1128/AEM.67.4.1437-1444.2001
Lichtfouse, E., Wells, W., Glaser, B., & Rice, J. (2003). Molecular Studies of Soil Organic Matter.
Manahan, S. (2017). Environmental chemistry, Tenth edition. In Environmental Chemistry, Tenth Edition. https://doi.org/10.1201/9781315160474
Masindi, V., Mkhonza, P., & Tekere, M. (2021). Sources of Heavy Metals Pollution. https://doi.org/10.1007/978-3-030-80334-6_17
Mustapha, M. U., & Halimoon, N. (2015). Screening and Isolation of Heavy Metal Tolerant Bacteria in Industrial Effluent. Procedia Environmental Sciences, 30, 33–37. https://doi.org/10.1016/j.proenv.2015.10.006
Naguib, M. M., Khairalla, A. S., El-Gendy, A. O., & Elkhatib, W. F. (2019). Isolation and characterization of mercury-resistant bacteria from wastewater sources in Egypt. Canadian Journal of Microbiology, 65(4), 308–321. https://doi.org/10.1139/cjm-2018-0379
Nealson, K., & Popa, R. (2005). Metabolic diversity in the microbial world: Relevance to exobiology. Microorganisms and Earth Systems - Advances in Geomicrobiology: Published for the Society for General Microbiology, 151–172. https://doi.org/10.1017/CBO9780511754852.009
Nwagwu, E. C., Yilwa, V. M., Egbe, N. E., & Bryan, G. (2017). Isolation and characterization of heavy metal tolerant bacteria from Panteka stream, Kaduna, Nigeria and their potential for bioremediation. 16(January), 32–40. https://doi.org/10.5897/AJB2016.15676
Øvreås, L., & Torsvik, V. (1998). Microbial Diversity and Community Structure in Two Different Agricultural Soil Communities. Microbial Ecology, 36, 303–315. https://doi.org/10.1007/s002489900117
Panswad, T., Doungchai, A., & Anotai, J. (2003). Temperature effect on the microbial community of enhanced biological phosphorus removal system. Water Research, 37, 409–415. https://doi.org/10.1016/S0043-1354(02)00286-5
Peréz-de-Mora, A., Burgos, P., Madejón, E., Cabrera, F., Jaeckel, P., & Schloter, M. (2006). Microbial community structure and function in a soil contaminated by heavy metals: Effects of plant growth and different amendments. Soil Biology and Biochemistry, 38, 327–341. https://doi.org/10.1016/j.soilbio.2005.05.010
Piotrowska, A., Gosiewski, T., Bulanda, M., & Brzychczy-Wloch, M. (2016). Using the 16S rDNA sequencing for identification of Lactobacillus species. Medycyna Doswiadczalna i Mikrobiologia, 68(1), 5–11.
Poonam, Rani, A., & Sharma, P. (2021). Biosorption: Principles, and Applications (pp. 501–510). https://doi.org/10.1007/978-981-15-6463-5_48
Quevedo, B., Giertsen, E., Zijnge, V., Lüthi-Schaller, H., Guggenheim, B., Thurnheer, T., & Gmür, R. (2011). Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms. BMC Microbiology, 11, 14. https://doi.org/10.1186/1471-2180-11-14
R. Cole, J., Chai, B., Farris, R., Wang, Q., Kulam, S. A., Mcgarrell, D., Garrity, G., & Tiedje, J. (2005). The Ribosomal Database Project (RDP-II): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Research, 33, 294–296. https://doi.org/10.1093/nar/gki038
Rohde, M. (2019). The Gram-Positive Bacterial Cell Wall. Microbiology Spectrum, 7(3). https://doi.org/10.1128/microbiolspec.GPP3-0044-2018
Sadeesh, T., Gajendran, G. P., & Ganapathy, A. (2021). eval_uation of undergraduate medical students’ preference to human anatomy practical assessment methodology: a comparison between online and traditional methods. Surgical and Radiologic Anatomy, 43, 1–5. https://doi.org/10.1007/s00276-020-02637-x
Sandaa, R.-A., Torsvik, V., & Enger, Ø. (2001). Sandaa RA, Torsvik V, Enger O.. Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biol Biochem 33: 287-295. Soil Biology and Biochemistry, 33, 287–295. https://doi.org/10.1016/S0038-0717(00)00139-5
Schloss, P., Girard, R., Martin, T., Edwards, J., & Thrash, J. (2016). The status of the microbial census: an update. https://doi.org/10.1101/038646
Schweitzer, L., & Noblet, J. (2018). Water Contamination and Pollution. In Green Chemistry (pp. 261–290). https://doi.org/10.1016/B978-0-12-809270-5.00011-X
Sharma, P., Balkwill, D., Frenkel, A., & Vairavamurthy, M. (2000). A New Klebsiella planticola Strain (Cd-1) Grows Anaerobically at High Cadmium Concentrations and Precipitates Cadmium Sulfide. Applied and Environmental Microbiology, 66, 3083–3087. https://doi.org/10.1128/AEM.66.7.3083-3087.2000
Sinha, S., & Paul, D. (2014). Heavy Metal Tolerance and Accumulation by Bacterial Strains Isolated from Waste Water. Journal of Chemical, Biological, and Physical Sciences, 4, 812–817.
Soo, R., Skennerton, C., Sekiguchi, Y., Imelfort, M., Paech, S., Dennis, P., Steen, J., Parks, D., Tyson, G., & Philip, H. (2014). An Expanded Genomic Representation of the Phylum Cyanobacteria. Genome Biology and Evolution, 6, 1031–1045. https://doi.org/10.1093/gbe/evu073
Spain, A. M., & Alm, E. W. (2003). IMPLICATIONS OF MICROBIAL HEAVY METAL TOLERANCE IN THE ENVIRONMENT.
Sultana, N., Hossain, S. M., Mohammed, M., Irfan, M., Bashirul, H., Faruque, M. O., Abdur Razzak, S., & Hossain, M. (2020). Experimental study and parameters optimization of microalgae-based heavy metals removal process using a hybrid response surface methodology-crow search algorithm. Scientific Reports, 10, 15068. https://doi.org/10.1038/s41598-020-72236-8
Tiago, I., Teixeira, I., Silva, S., Chung, P., Verissimo, A., & Manaia, C. (2005). Metabolic and Genetic Diversity of Mesophilic and Thermophilic Bacteria Isolated from Composted Municipal Sludge on Poly-e-caprolactones. Current Microbiology, 49, 407–414. https://doi.org/10.1007/s00284-004-4353-0
Tiwari, S., Tripathi, I., & Tiwari, H. (2013). Effects of Lead on Environment. 2278–9359.
Tsai, Y. P., You, S.-J., Pai, T.-Y., & Chen, K.-W. (2005). Effect of cadmium on composition and diversity of bacterial communities in activated sludges. International Biodeterioration & Biodegradation - INT BIODETERIOR BIODEGRAD, 55, 285–291. https://doi.org/10.1016/j.ibiod.2005.03.005
Wani, A. L., Ara, A., & Usmani, J. A. (2015). Lead toxicity: A review. Interdisciplinary Toxicology, 8. https://doi.org/10.1515/intox-2015-0009
Webster, G., Mullins, A. J., Cunningham-Oakes, E., Renganathan, A., Aswathanarayan, J. B., Mahenthiralingam, E., & Vittal, R. R. (2020). Culturable diversity of bacterial endophytes associated with medicinal plants of the Western Ghats, India. FEMS Microbiology Ecology, 96(9). https://doi.org/10.1093/femsec/fiaa147
Whitman, W., Coleman, D., & Wiebe, W. (1998). Prokaryotes: the unseen majority. Proc Nat Acad Sci USA. Proceedings of the National Academy of Sciences of the United States of America, 95, 6578–6583. https://doi.org/10.1073/pnas.95.12.6578
Zayed, A., & Terry, N. (2003). Chromium in the Environment: Factors Affecting Biological Remediation. Plant and Soil, 249, 139–156. https://doi.org/10.1023/A:1022504826342.

Most read articles by the same author(s)