Mathematical Models of Biological Control of Dengue

Page Numbers: 92-102
Published: 2024-04-17
Digital Object Identifier: 10.58578/mjaei.v1i2.2874
Save this to:
Article Metrics:
Viewed : 93 times
Downloaded : 65 times
Article can trace at:

Author Fee:
Free Publication Fees for Foreign Researchers (0.00)
Connected Papers:
Connected Papers


Please do not hesitate to contact us if you would like to obtain more information about the submission process or if you have further questions.




  • Nand Kishor Kumar Trichandra Collage, Tribhuvan University, Nepal
  • Dipendra Prasad Yadav Thakur Ram Multiple Campus, Nepal

Abstract

Dengue fever, transmitted by Aedes mosquitoes, poses a significant public health threat in tropical and subtropical regions worldwide. Despite efforts to control its spread through various means, including vector control strategies and vaccine development, dengue remains a formidable challenge. Mathematical modeling has emerged as a valuable tool in understanding the complex dynamics of dengue transmission and evaluating control strategies, particularly those involving biological control methods.

Keywords: Dengue fever; Aedes mosquitoes; Vector control; strategies; Biological control methods
Share Article:

Citation Metrics:



Downloads

Download data is not yet available.
How to Cite
Kumar, N., & Yadav, D. P. (2024). Mathematical Models of Biological Control of Dengue. Mikailalsys Journal of Advanced Engineering International, 1(2), 92-102. https://doi.org/10.58578/mjaei.v1i2.2874

References

WHO (World Health Organization) (2022). Disease Outbreak News: Dengue fever- Nepal. Available at https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON412.

Reich, N.G., Shrestha, S., King, A. Rohani, P. Lessler, J., Kalayanarooj, S., Yoon, I.-K., Gibbons, R.V., Burke, D.S., Cummings, D.A.T. (2013). Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J. R. Soc, Interface, 10, 20130414.

Aguiar M, Anam V, BlyussK.B, Estadilla C.D.S, Guerrero B.V, Knopoff, D, Kooi B.W., Srivastav, A.K. Steindorf, V.,Stollenwerk, N. (2022). Mathematical models for dengue fever epidemiology: A 10-year systematic review. Phys Life Rev. 1-3.

Wilder-S. A., Ooi, E.E., Horstick, O., & Wills, B. (2019). Dengue. Lancet, 393, 350–363.

Sulistyawati, S., Astuti, F.D., Umniyati, S.R., Satoto, T.B.T., Lazuardi, L., Nilsson, M., Rocklov, J., Andersson, C.,& Holmner, A.(2019). Dengue Vector Control through Community Empowerment: Lessons Learned from a Community-Based Study in Yogyakarta, Indonesia. Int. J. Environ. Res. Public Health , 16, 13.

Otu, A., Ebenso, B., Etokidem, A. & Chukwuekezie, O. (2010). Dengue fever-an update review and implications for Nigeria, and similar countries. Afr. Health Sci, 19, 2000–2007.

Ferguson, N.M. (2018). Challenges and opportunities in controlling mosquito-borne infections. Nature, 559, 490–497.

Lacroix, R., McKemey, A.R., Raduan, N., Kwee W, L., Hong M, W., Guat N, T., Rahidah, A.A.S., Salman, S., Subramaniam, S., &Nordin, O. et al. (2012). Open Field Release of Genetically Engineered Sterile Male, Aedes aegypti in Malaysia. PLoSONE , 7, 42771.

Carvalho, D.O., McKemey, A.R., Garziera, L., Lacroix, R., Donnelly, C.A.;,Alphey, L. Malavasi, A.&Capurro, M.L. (2015). Suppression of a Field Population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoSNegl. Trop. Dis., 9, 0003864.

Lebon, C., Benlali, A., Atyame, C., Mavingui, P.,&Tortosa, P. (2018). Construction of a genetic sexing strain for Aedes albopictus: A promising tool for the development of sterilizing insect control strategies targeting the tiger mosquito. Parasites Vectors,11, 658.

Buhler, C., Winkler, V., Runge, R. S., Boyce, R., &Horstick, O. (2019). Environmental methods for dengue vector control—A systematic review and meta-analysis. PLoSNegl. Trop. Dis. 13, 0007420.

Horstick, O., Boyce, R., &Runge,R. S. (2017). Dengue vector control: Assessing what works? Southeast Asian J. Trop Med. 48, 181–195.

Marrero, A.I.T. (2021). Reaction-diffusion equations and applications to biological control of dengue and inflammation. Analysis of PDEs [math. AP].Universite-Paris-Nord- Paris, 13.

Wang, W & Wang, W. (2007). Propagation of HBV with spatial dependence. Math. Bio Science, 210, 78-95.

Nowak, M.A., Bonhoeffer,S., Hill, A.M., Boehme, R., Thomas, H.C.,& McDade, H.(1996). Viral dynamics in hepatitis B virus infection. Proc. Natl. Acad. Sci. 93, 4398-4402.

Wang, K. ,Wang,W.,& Song, S.(2008).Dynamics of an HBV model with diffusion and delay. J. Theoret. Biol., 253,36-44.

Xu, R. & Ma. Z.E. (2009).An HBV model with diffusion and time delay. J. Theoret. Biol., 257, 499-509

Yang,J., Liang, S.,& Zhang, Y. (2011). Travelling waves of a delayed SIR epidemic model with nonlinear incidence rate and spatial diffusion. PLoS ONE, 6, 21128.

L. Wang, L.,& Li, M.Y.(2001). Diffusion-driven instability in reaction–diffusion systems. J. Math. Anal. Appl., 254,138-153.

Hattak, K.&Yousfi, N. (2013). Global stability for reaction-diffusion equations in biology. Computers and Mathematical with Applications,66(8),1488-1497.

Shrestha R, Pant, N.D, GC G, Thapa, S, Neupane, B, Shah Y, et al. (2016). Serological and Entomological Study of Dengue in Dang and Chitwan Districts of Nepal. PLoS ONE, 11(2): e0147953. https://doi.org/10.1371/journal.pone.0147953

Wang, S.L., Feng, X.L. & He. Y.N. (2011). Global asymptotical properties for a diffused HBV infection model with CTL immune response and nonlinear incidence. Acta Math. Sci., 31 (5), 1959-1967

Wang, Z.C. & Wu, J. (2010). Travelling waves of a diffusive Kermack–McKendrick epidemic model with non-local delayed transmission. Proc. R. Soc. Ser. A, 466,237-261.

Mottoni, P.D., Orlandi, E. & Tesei, A. (1979). Asymptotic behavior for a system describing epidemics with migration and spatial spread of infection. Nonlinear Anal., 3 , 663-675.

Li, T., Li,Y. & Herbert, W. H. (2009). Periodic traveling waves in SIRS endemic models. Math. Comput. Modelling, 49, 393-401

Li, F. &Yip, N.K. (2011). Long time behavior of some epidemic models. Discrete.Contin. Dyn. Syst. Ser. B, 16, 867-881.

Dunn, F.L. (1983). Human behavioral factors in mosquito vector control. Southeast Asian J Trop Med Pub Health. 14 (1), 86–94.

Bang,Y.H, &Tonn, R.J. (1993). Vector control and intervention. New Delhi: World Health Organization, Regional Office for South-East Asia,139–63. (Regional Publication SEARO No. 22).

Rozendaal, J. A. (1997). Vector control: Methods for use by individual and communities. Geneva: World Health Organization.

Sharma, R.S., Sharma,G.K, &Dhillon, G.P.S. (1996). Epidemiology and control of malaria in India. New Delhi: National Malaria Control Programme.

Christopher, S.R. (1960). Aedes aegypti-the yellow fever mosquito. London: Cambridge University Press.

Gubler, D.J. (1997). The Arbovirus: Epidemiology and Ecology. New York: CRC Press, CAB International, 115–132.

Esteva, L. & Vargas, C. (1978). Analysis of a dengue transmission model. Mathematics of Bioscience, 150(2), 131-151.

Olliaro, et.al. (2014). Priority needs for dengue research. Washington: A WHO/TDR Perspective.