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Abstract 
 
 

The report aims to explore the application of differential equations in modeling the 

motion of planets and stars within our universe, serving as an introduction to the 

captivating realm of celestial mechanics. We utilize differential equations to represent 

the movement and positions of celestial bodies within a gravitational field, grounding 

our analysis in Newton's laws of motion and gravitation. Moreover, we employ Kepler's 

laws of planetary motion to elucidate the orbits of planets around the sun. It is 

important to note that this report offers a simplified perspective, designed for 

educational purposes. In reality, celestial mechanics can be exceedingly intricate, 

involving n-body problems, relativistic effects, and a multitude of other factors. 

Keywords: Celestial mechanics, Relativistic effects, Gravitational constant, N-body 

problems 
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Introduction 

Johannes Kepler, a German astronomer, made groundbreaking contributions to celestial 

mechanics in the early 17th century. He formulated three laws of planetary motion based on 

careful observations made by his mentor, Tycho Brahe. Kepler’s laws describe how planets 

move in the solar system and are fundamental to understanding celestial mechanics. They 

are: 

1. Kepler’s first law (Law of Ellipses): Planetary orbits are ellipses with the sun at one 

of the two foci. This law replaced earlier notation of perfectly circular orbits and 

introduced the concept of elliptical orbits, with the sun not at the center but at one 

of the foci. 

2. Kepler’s second law (Law of Equal areas): A line segment joining a planet and the 

sun sweeps out equal areas in equal times. This law explains how a planet’s speed 

varies as it moves along its elliptical orbit. When closer to the sun (perihelion), the 

planet moves faster, and when farther (aphelion), it moves more slowly. 

3. Kepler’s third law (Law of Harmonies): The Square of the orbital period of a planet 

is directly proportional to the cube of the semi-major axis of its orbit. This law 

establishes a mathematical relationship between a planet’s distance from the sun and 

its orbital period. It helps relate the size of a planet’s orbit to the time it takes to 

complete one orbit. Mathematically, it can be expressed as: 

𝑇2 ∝  𝑎3 

Where: 

• T is the orbital period of the planet. 

• a is the semi-major axis of the planet’s elliptical orbit. 

Kepler’s laws were groundbreaking and marked a significant departure from the previous 

geocentric model of the universe. These laws describe the empirical aspects of planetary 

motion, and they played a crucial role in paving the way for Isaac Newton’s theory of 

universal gravitation, which provided a physical explanation for why planets follow these 

elliptical paths around the Sun. Kepler’s laws describe the empirical aspects of planetary 

motion but do not provide mechanism for why planets move the way they do. That’s where 

the Newton’s work comes in. 
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Newton’s Law of Universal Gravitation: 

Isaac Newton, an English physicist and mathematician, introduced the theory of universal 

gravitation in his book “Philosophiae Naturalis Principia Mathematica” (Mathematical 

Principles of Natural Philosophy), commonly known as the Principia, published in 1687. 

Newton’s law of universal gravitation is a fundamental principle in explaining planetary 

motion: 

• Every point mass attracts every other point mass by a force along the line intersecting 

both points. The force is directly proportional to the product of their masses and 

inversely proportional to the square of the distance between them.  

Mathematically, 

𝐹 =
𝐺. 𝑚1. 𝑚2

𝑟2
 

Where: 

F is the force of attraction between two objects. 

G is the universal gravitational constant. 

m1 and m2 are the masses of two objects. 

r is the distance between the centers of the two objects. 

Newton’s law of universal gravitation provided a theoretical framework for understanding 

why planets move as described by Kepler’s laws. The gravitational force from the Sun, which 

follows Newton’s law, is responsible for the elliptical orbits and the equal areas swept out by 

planets, as well as the precise mathematical relationship between a planet’s orbital period and 

its distance from the sun. 

Johannes Kepler and Sir Isaac Newton made significant contributions to our understanding 

of planetary motion, laying the foundation for modern celestial mechanics. Their theories 

are fundamental to explaining how planets move in our solar system. 

Numerous researchers and organizations were actively working on modeling planetary 

motion, both in terms of understanding the fundamental principles of celestial mechanics 

and for practical purposes such as space missions and astronomical observations. Here are 

some insights into organizations and areas where research related to planetary motion was 

likely ongoing: 

1. Space agencies: Space agencies like NASA, ESA, and other national space 

organizations regularly conduct research and modeling of planetary motion to plan 
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and execute space missions. They also analyze the dynamics of spacecraft in the solar 

system. 

2. Astronomical observatories: Astronomers and astrophysicists at observatories and 

research institutions study planetary motion to improve our understanding of the 

solar system and beyond. They make observations and develop models to predict the 

positions of planets and other celestial objects. 

3. Astronomical societies and conference: Astronomical societies, conferences and 

publications regularly feature research on planetary motion. Leading astronomers 

and scientists share their work and insights in these forums. 

 

Celestial Mechanics: 

Celestial mechanics is a branch of astronomy and physics that focuses on the study of the 

motion of celestial bodies in space, particularly the motion of planets, moons, stars, comets, 

and other objects within our universe. It seeks to explain and predict the positions and 

behaviors of these objects based on the principles of physics and mathematics. Celestial 

mechanics is fundamental to our understanding of the dynamics of the solar system and the 

universe as a whole. 

The primary objectives of celestial mechanics include: 

1. Understanding Planetary Orbits: Celestial mechanics provides insights into the 

shapes, sizes, and orientations of planetary orbits, as well as how they change over 

time. 

2. Determining Positions and Motions: It enables the precise prediction of celestial 

objects positions and movements at any given time, which is essential for 

astronomical observations and space exploration. 

3. Studying Gravitational Interactions: Celestial mechanics explores the gravitational 

interactions that govern the behavior. The law of universal gravitation, formulated 

by Isaac Newton, is a cornerstone of this field. 

4. Evaluating the Effects of perturbations: Celestial mechanics takes into account the 

effects of perturbations, which are gravitational influences from the other celestial 

bodies. These perturbations can have a significant impact on orbits. 
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Central force concept: 

Central force concept is a fundamental concept in physics, particularly in the context of 

celestial mechanics and the motion of objects in a central gravitational field, where gravity is 

the dominant force. This concept is crucial for understanding how objects like planets, 

moons, and other celestial bodies move under the influence of gravity. Central force is a 

force that acts on an object and is directed toward or away from a fixed point, known as the 

center of force. In the context of celestial mechanics, gravity is often the dominant central 

force. For example, when studying the motion of planets in the solar system, the gravitational 

force exerted by the Sun is considered as central force. The gravitational force acts toward 

the center of the Sun, and it is responsible for keeping planets in their orbits. The central 

force concept is often mathematically described using polar coordinates. In polar 

coordinates, the motion of an object is described in terms of its radial distance from the 

center of force (r) and its angular position (𝜃). 

 

Need for differential equations in modeling planetary and stellar motion: 

1. Dynamics Systems: Planets and stars are dynamic systems, meaning their positions 

and velocities change continuously. Differential equations provide a framework to 

describe how these quantities change with time. 

2. Change over time: Differential equations are essential for modeling objects motion 

because they describe how physical quantities (position, velocity, and acceleration) 

change over time or other relevant independent variables (e.g., distance from a 

central body or time since a certain event). 

3. Interaction Forces: Planetary and stellar motion is primarily governed by gravitational 

forces. Differential equations allow us to describe how objects interact under these 

forces. Newton’s law of universal gravitation, for example, is expressed as a 

differential equation, providing a mathematical description of these interactions. 

4. Predictive power: By solving differential equations, we can predict the future 

positions and velocities of celestial bodies. This predictive power is vital for 

astronomical observations, space exploration, and the understanding of long-term 

cosmic phenomena. 

5. Numerical simulations: While some problems can be solved analytically, many 

celestial mechanics problems, especially those involving multiple bodies or complex 
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gravitational perturbations, are too challenging to solve directly. Numerical 

simulations using differential equations and computational methods are essential for 

accurate modeling. 

6. Accounting for perturbations: Celestial bodies experience perturbations from other 

nearby objects, such as the gravitational influence of other planets or stars. 

Differential equations are used to account for these perturbations and determine 

their effects on the motion of the objects. 

7. Realistic orbits: Real orbits are often not perfect circles, and they can be highly 

elliptical or subject to other distortions. Differential equations allow us to understand 

these more complex orbital shapes. 

8. Accounting for Relativistic Effects: In some cases, such as when modeling the orbit 

of Mercury, relativistic effects (as described by Einstein’s theory of general relativity) 

need to be considered. Differential equations can be adapted to account for these 

effects. 

9. Scientific understanding: The study of planetary and stellar motion is central to our 

understanding of the universe. Differential equations provide a precise and 

quantitative way to study and analyze these motions, leading to insights into 

fundamental physical laws.      

 

Acceleration due to gravity: 

Acceleration due to gravity, often denoted as g, is a fundamental concept in physics. It 

represents the acceleration that a mass experiences due to the gravitational force of a celestial 

body, such as a planet or a star. This acceleration is directed toward the center of the celestial 

body and is responsible for the force of gravity. 

Mathematically, 

𝑔 =
𝐹

𝑚
 

Where: 

g is the acceleration due to gravity. 

F is the gravitational force acting on an object. 

m is the mass of the object. 
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The value of g depends on the mass of the celestial body and the distance from its center. 

On Earth, the average acceleration due to gravity is approximately 9.81 m/s2. This means 

that an object with a mass of 1 kg experiences a gravitational force of about 9.81 N toward 

the center of the Earth. 

 

Applying Acceleration due to gravity to a celestial body: 

To apply the concept of acceleration due to gravity to a celestial body, let’s use the example 

of earth. On Earth, the acceleration due to gravity is approximately 9.81 m/s2. Here’s how 

we can apply it to an object on or near Earth: 

1. Weight calculation: The weight of an object on earth is the force of gravity acting on 

it. It can be calculated using the formula: 

W= m.g 

Where: 

W is the weight of the object. 

m is the mass of the object. 

 g is the acceleration due to gravity on Earth. 

2. Planetary motion: Celestial bodies, such as planets, experience gravitational 

acceleration from the central body, which keeps them in orbit. For example, the 

acceleration due to gravity on the surface of Earth keeps the Moon in orbit around 

our planet 

 

Deriving the differential equation 

To derive a second-order differential equation that describes the motion of a planet or star 

under the influence of gravity, we can start with Newton’s law of universal gravitation. The 

equation should include the position vector, mass, and the gravitational constant. The motion 

of a celestial body under gravity can be described in terms of polar coordinates, where we 

consider the radial distance from the central body and the angular position. Here’s how we 

can derive the equation: 

Consider a celestial body (planet or star) of mass m and M is the mass of central body (Sun 

for planets). Let r be the distance between their centers and  𝑟 be the position vector of the 
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celestial body relative to the central body. Let G be the universal gravitational constant and 

F be the gravitational force between two point masses. 

 

    F   m 

    r 

 

 

According to Newton’s law of universal gravitation, 

𝐹 =
𝐺. 𝑚. 𝑀

|𝑟|2
 . �̂� 

Where |𝑟| is the magnitude of the position vector, and �̂� is the unit vector pointing from the 

celestial body to the central body. 

Also, the acceleration �⃗� experienced by the celestial body due to gravity is given by Newton’s 

second law: 

�⃗� =
�⃗�

𝑚
 

Substituting the gravitational force equation: 

�⃗� =
𝐺. 𝑀

|𝑟|2
 . �̂� 

In polar coordinate system, we can decompose the position vector 𝑟 into its radial 

component (r) and angular component (𝜃). 

The radial equation for motion under gravity is derived from the equation for acceleration 

as follows: 

𝑚 .
𝑑2𝑟

𝑑𝑡2
= −

𝐺. 𝑚. 𝑀

𝑟2
+  𝑚 . 𝑟 . (

𝑑𝜃

𝑑𝑡
)

2

 

This equation describes the radial motion of the planet or star as it orbits the central body 

under the influence of gravity. The first term on right side represents the gravitational 

attraction and the second term represents the centrifugal force. 

M 
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The angular motion of a planet or star is typically not influenced directly by gravity and 

follows a simpler path. Therefore, the angular equation is 

𝑚 . 𝑟2 . (
𝑑2𝜃

𝑑𝑡2
)

2

= 0 

This equation states that the angular acceleration is zero, meaning the angular velocity 

remains constant (in the absence of other forces). 

These two equations describe the motion of a planet or star under the influence of gravity. 

The radial equation accounts for the changes in radial distance from the central body, while 

the angular equation addresses the angular motion.  

Circular orbits are simplified but important case in celestial mechanics. In a circular orbit, a 

celestial body (such as a planet or a satellite) moves in a path that traces a perfect circle 

around a central body (e.g., a star like the Sun). Circular orbits are particularly useful in 

simplifying the mathematics of celestial mechanics and provide a basis for understanding 

more complex elliptical orbits. 

Consider a celestial body of mass m in a circular orbit around a central body of mass M (e.g., 

a planet orbiting the sun) the position vector 𝑟 points from the central body to the celestial 

body. Gravity provides the necessary centripetal force to keep the celestial body in circular 

orbit. According to Newton’s second law, 

𝐹 = 𝑚 . 𝑎 

Where a is centripetal acceleration which is directed radially inward and is determined by the 

angular velocity (𝜔)and the radius of the orbit (r). it is given by 

𝑎 = 𝜔2 . 𝑟 

Gravitational force pulling the celestial body towards the central body is given by 

𝐹 =
𝐺. 𝑚. 𝑀

𝑟2
  

Equating the centripetal force to the gravitational force: 

𝑚 . 𝜔2 . 𝑟 =
𝐺. 𝑚. 𝑀

𝑟2
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We have, 

𝜔 =
2𝜋

𝑇
 

Where T is orbital time period. 

Substituting 𝜔 , we get 

𝑟3 =
𝐺. 𝑀. 𝑇2

4𝜋2
 

Also, centripetal force required for a circular orbit is given by: 

𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 = 𝑚.
𝑣2

𝑟
 

Where r and v are the radius and velocity of the celestial body in the circular orbit 

respectively. 

So,  
𝐺.𝑚.𝑀

𝑟2 =  𝑚.
𝑣2

𝑟
 

Or,      𝑣2 =
𝐺.𝑀

𝑟
 

For example: we can use this derived equation for circular orbits to find orbital parameters 

of Earth’s orbit around the Sun. 

Solution: 

Radius of Earth’s circular orbit (r) = 1.496×1011𝑚  (𝑎𝑝𝑝𝑟𝑜𝑥) 

Mass of the Sun (M) =1.989×1030kg 

Velocity of Earth in its circular orbit can be calculated as: 

𝑣2 =
𝐺. 𝑀

𝑟
 

Or,    𝑣2 =
(6.67×10−11).(1.989×1030)

(1.496×1011)
 

∴ 𝑣 = 2.9 × 104𝑚/𝑠 

This is an oversimplified representation of Earth’s orbit, as Earth’s actual orbit is an ellipse 

with variations in velocity throughout the year due to Kepler’s laws and orbital dynamics. 

However, for basic calculations, a circular orbit approximation. 

 



Pravesh Sharma, Suresh Kumar Sahani, Kameshwar Sahani, Kritika Sharma 

Volume 3, Nomor 6, Desember 2023 779 

Challenges for solving differential equations analytically: 

Solving differential equations analytically can be challenging especially for complex equations 

like motion of planets and stellar due to the following reason: 

1.  Complexity of the equations: equations for motion of celestial bodies can become 

extremely complex. Analytical solutions may not exist or may be exceedingly difficult 

to obtain, especially in case involving more than two bodies. 

2. Nonlinearity: many differential equations describing planetary motion involve 

nonlinear terms, making them challenging to solve analytically. Nonlinearity can lead 

to lack of closed-form solutions. 

3. Initial and Boundary conditions: Analytical solutions often require precise initial and 

boundary conditions, which can be hard to determine accurately, especially for real-

world celestial systems with various perturbations. 

4. Perturbations: Real planetary motion is influenced by perturbations from other 

celestial bodies. These perturbations add complexity to the equations, making 

analytical solutions less practical. 

5. Relativistic effects: For high-precision applications, such as GPS systems or 

spacecraft navigation, relativistic effects need to be considered, which further 

complicate analytical solutions. 

 

Introduction to numerical methods – Euler’s method: 

Numerical methods are essential for approximating solutions to differential equations, 

especially when analytical solutions are difficult or impossible to obtain. One of the simplest 

numerical methods is Euler’s method, which is used to approximate the solution of first-

order ordinary differential equations. It works by discretizing the domain into small time 

steps and iteratively updating the solution. 

Euler’s method approximates the solution y(t) of a first-order ordinary differential equation 

dy/dt = f(t ,y) using the following iterative formula: 

yn+1 = yn + h . f(tn , yn) 

 where: 

yn+1 is the updated solution at time tn+1 = tn + h. 



Pravesh Sharma, Suresh Kumar Sahani, Kameshwar Sahani, Kritika Sharma 

 ARZUSIN : Jurnal Manajemen dan Pendidikan Dasar 780 

yn is the current solution at time tn. 

h is the step size (time increment) 

f(tn , yn) is the value of the derivative at time tn and solution yn. 

 

Here is an example illustrating the position of earth around sun in its orbit: 

Assumption: 

1. Earth revolve around the Sun in it circular simplified orbit but in reality the Earth’s 

orbit is elliptical, this example is just for demonstration purposes. 

2. Earth does not experience any other force due to other celestial bodies. 

3. We will use a simplified example with 2D coordinates. 

 

To find the position of Earth around the Sun at different intervals of time using the 

Euler method with the given formula: 

 yn+1 = yn + h . f(tn , yn) 

where: 

yn represents the position of Earth at time tn. 

h denotes the interval. 

f(tn, yn) is the derivative of the position with respect to time. 

Here is a C program for iterative operation up to 365 days to demonstrate the x- and y-

coordinate: 

#include <stdio.h> 

#include <math.h> 

// Function to calculate the derivative based on the circular motion 

void f(double t, double x, double y, double *dxdt, double *dydt) 

 { 

    double r = sqrt(x * x + y * y); 

    double G = 6.67430e-11; // Gravitational constant 

    double M = 1.989e30;   // Mass of the Sun 

    double F = G * M / (r * r); 

    *dxdt = -F * x / r; 

    *dydt = -F * y / r; 
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} 

int main()  

{ 

    double t = 1;        // Initial time 

    double x = 1.496e11;   // Initial x-coordinate (Earth's distance from the Sun) 

    double y = 0.0;        // Initial y-coordinate (assuming Earth starts on the x-axis) 

    double h = 3600.0;     // Time step (in seconds) 

    int numsteps = 365;   // Number of steps to simulate 

while(t<numsteps) 

 { 

        double dxdt, dydt; 

        f(t, x, y, &dxdt, &dydt); 

        x = x + h * dxdt; 

        y = y + h * dydt; 

        t = t + 1; 

        printf("Time: %.2f seconds, x: %.2f meters, y: %.2f meters\n", t, x, y); 

    } 

    return 0; 

} 

 

By running this program, we can find the position of Earth around the Sun in 2D from 1 to 

365 days and it was found as 1.496× 1011 meters and 0 in x- and y-coordinates respectively. 

Some mission and space exploration where such model are used: 

1. To locate geostationary satellite for telecommunication, military defense. 

2. Missions such as the Hubble space Telescope are positioned in orbits that provide 

optimal viewing angles for observing distant astronomical objects. These orbits are 

carefully chosen based on Earth’s position relative to the Sun and other celestial 

objects. 

3. Missions like lunar landings, spacewalks, satellites monitoring earth climate etc. 
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Conclusion 

Using differential equation, the position of celestial bodies can easily be found using 

Euler’s method rather than complex analytical method and perturbations as the position 

of earth around the Sun in simplified circular orbit (assumption) is determined. 

 

Further exploration 

Differential equations can further be used in advanced topics and techniques contributing 

space related researches and exploration. The theories may involve the position of celestial 

bodies under perturbations (i.e. three body problems) or relativistic effects in celestial 

mechanics. 

It can be further used to determine its velocity at different interval of time in its elliptical 

path observing the duration of earth moving away from the sun and proceeding towards the 

sun in its elliptical orbit.  

The research may include the influence of gravitational force among different celestial bodies 

orbiting the Sun in its own separate orbit. 
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