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Abstract 
 

This article explains an important asymptotic series theorem. Poincare also 

demonstrates how to solve linear differentials with polynomial coefficients 

using asymptotic series. The significance of asymptotic series has also been 

discussed  

 Keywords: Poincare theorem, Asymptotic Series  

 

Introduction and Historical Remarks 

Poincare explored and defined the equation 

 f(λ z) = R(f(z)), z ∈ ℂ          (i) 

 in his major articles published in 1890[1], where R(z) is a rational function and C is a 

constant. He demonstrated that if R(0) = 0, R′ (0) = 𝜆 and   | 𝜆| > 1, a meromorphic or 

full solution of equation (i) occurs. After Poincare's, (i) is known as the Poincare's equation, 
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and its solutions are known as the Poincare's functions. Later, G. Valiron [2], [3] took a 

significant step by discussing the equation (i) as R(z) = p(z) is a polynomial.  

     f(λ z) = p(f(z)), z ∈ C,         ( ii) 

 and discovered the existence of a full solution f(z).  He arrived at the asymptotic formula 

for 

   M(r) = max |z|≤r |f(z)| 

 log M(r) ∼ r ρF  log r log |λ| , r → ∞        (iii)  

F(z) is a one-periodic function that is restricted by two positive constants, = log d log || 

and d = deg p(z). Borel developed his well-known sum ability theory of oscillating series 

around 1896. Borel's theory is more precise and accurate than Poincare's. Mittag-Leffler 

constructed and defined asymptotic series with greater precision. The studies [4], [5], [6], [7] 

investigated various elements of Poincare's functions.    

  In 1912, Poincare published a paper titled "Sur un Theoreme de Geometrie" [8], in which 

he presented a large amount of geometric proof in numerous special circumstances. 

However, he was unable to prove the theorem. Following Poincare's death in 1913, 

another mathematician, George David Birkhoff, published the first complete proof [9]. 

Unfortunately, Birkhoff's argument for the existence of the second fixed point is based on 

a faulty application of Poincare's theorem [10], also known as the Poincare's-Hoff index 

theorem in its more comprehensive form.   

 The indices of the fixed points of f must add to zero, according to Poincare's theorem. As 

a result, if f has at least one fixed point with a non-zero index, there must be at least one 

more fixed point. This, however, ignores the possibility that the fixed point has index zero. 

Birkhoff ultimately proved the general case of the theorem in 1926 in a paper titled "An 

extension of Poincare's last geometric theorem" using an analytic approach different from 

Poincare's [11].  

 

Preliminaries 

Let a function J(x) defined in inverse powers of x 

     J(x) =  𝑎0 +
𝑎1

𝑥
+

𝑎2

𝑥2 +
𝑎3

𝑥3 + ⋯ ⋯.  
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Generally, the partial sums do not necessarily have to converse; but we consider 

that partial sum yields "asymptotic" formula for f. 

   lim
𝑥→∞

𝑥𝑛(𝐽 − 𝑆𝑛) = 0         

 (iv) 

Where J(x) >
𝐾𝑛

𝑋𝑛+1  and 𝐾𝑛 depends on n, not on x.  𝑆𝑛  is partial sum up to (n+1) terms. 

 

Definition 

Poincare Statement  

    If for all n, the series is asymptotic to the function. This relation (iv) can be 

represent as 

  J(x)  ~ 𝑎0 +
𝑎1

𝑥
+

𝑎2

𝑥2 +
𝑎3

𝑥3 + ⋯ ⋯          

 (v) 

     This series is ordered as  
1

𝑥𝑛+1 .  For a given value of n, the first (n+1) terms of the 

series can be chosen to be as close to the function J(x) possible by extending x.  There is an 

inaccuracy of order  
1

𝑥𝑛+1  for each value of x and n. Because the series is now divergent, 

there is an optimal number of terms in the series to describe J(x) for a given value of x. 

This is an unavoidable mistake.  As x increases, so does the optimal number of terms 

increase and the inaccuracy. It is noteworthy that the asymptotic series differs significantly 

from the traditional power law, as 

 sinx = x−
𝑥3

3!
 + 

𝑥5

5!
 + 

𝑥7

7!
 +⋯ ⋯.  For all finite values of x,  sinx converges  perfectively. 

 

Some important theorem [9] 

Theorem 1:  Convergent asymptotic series can be added and subtracted. 

Proof:  From the definition of asymptotic expansion, it is obvious. 

Theorem 2: Convergent asymptotic series can be multiplied. 

Proof: consider two asymptotic series: 

J(x) ~ 𝑎0 +  
𝑎1

𝑥
+

𝑎2

𝑥2 +
𝑎3

𝑥3 +  … .,  K (x) ~  𝑏0 +  
𝑏1

𝑥
+

𝑏2

𝑥2 +
𝑏3

𝑥3 +  … .,  
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Then the formal product is  

               Π (𝑥) =  𝑐0 +  
𝑐1

𝑥
+

𝑐2

𝑥2 +
𝑐2

𝑥3 +  …  .  Where 𝑐𝑛 =  𝑎0𝑏𝑛 +  𝑎1𝑏𝑛−1+ . . 𝑎0𝑏0. 

We will show that the product J(x)∙ k(x) id represented asymptotically by Π(x). 

𝑠𝑛 =  𝑎0 +  
𝑎1

𝑥
+

𝑎2

𝑥2 +
𝑎3

𝑥3 … +
𝑎𝑛

𝑥𝑛 

𝑇𝑛 =  𝑏0 +  
𝑏1

𝑥
+

𝑏2

𝑥2 +
𝑏3

𝑥3 … +
𝑎𝑛

𝑥𝑛 

 ∑ = 𝑐0 +  
𝑐1

𝑥
+

𝑐2

𝑥2 +
𝑐3

𝑥3  … +
𝑐𝑛

𝑥𝑛𝑛  

Denote the sums of the first (n +1) terms in these three series. Then we have: 

J(x) = 𝑠𝑛 +  
𝑃

𝑥𝑛 ,      𝐾(𝑥) =  𝑇𝑛 +
𝜎

𝑥𝑛 

Where 𝜌, 𝜎 are function of x which tend to zero as 𝑥 = ∞. Now, by definition ∑𝑛 

coincides with the product 𝑆𝑛𝑇𝑛 including the terms 
1

𝑥𝑛. 

𝑆𝑛𝑇𝑛 = (𝑎0 +  
𝑎1

𝑥
+

𝑎2

𝑥2 +
𝑎3

𝑥3  … +
𝑎𝑛

𝑥𝑛 )  (𝑏0 +  
𝑏1

𝑥
+

𝑏2

𝑥2 +
𝑏3

𝑥3 … +
𝑎𝑛

𝑥𝑛),  on simplification and 

got the form 𝑆𝑛𝑇𝑛 - ∑𝑛 consists the terms from 
1

𝑥𝑛+1 to 
1

𝑥2𝑛. 

As x→ ∞ , J(x)→ 𝑎𝑜 , K(x)→ 𝑏0 and 𝜌 → 0 , 𝜎 → 0   

lim
𝑥→∞

(𝑥𝑛𝐽(𝑥)𝐾(𝑥) − ∑𝑛 ) = lim
𝑥→∞

𝑝𝑛

𝑥𝑛 = 0. So, the product 𝐽(𝑥)𝐾(𝑥) is represented by 

asymptotically by ∏(𝑥). 

Theorem 3: An asymptotic series is integrated term by term to get another asymptotic 

series of the integral of original function. 

Proof:  Suppose the integration of an asymptotic series in which 𝑎0 = 0,   𝑎1 = 0. 

                If     J (x) ∼
𝑎2

𝑥2 +
𝑎3

𝑥3 +
𝑎4

𝑥4 + ⋯            

lim
𝑥→∞

𝑥𝑛  (J - 𝑆𝑛) = 0   so, for any  𝜀 > 0   there is 𝑛0 ,  such that  

|𝑥𝑛(𝐽 − 𝑆𝑛)| < 𝜀 𝑜𝑟|𝐽 − 𝑆𝑛| <
𝜀

𝑥𝑛  for any n≥ 𝑛0. 

|𝐽 − 𝑆𝑛| <
𝜀

𝑥𝑛  if x ≥ 𝑥0 

|∫ (𝐽 − 𝑆𝑛)
∞

𝑥
| ≤ ∫ |𝐽 − 𝑆𝑛|

∞

𝑥
 < ∫

𝜀

𝑥𝑛

∞

𝑥
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|∫ 𝐽𝑑𝑥
∞

𝑥

− ∫ 𝑆𝑛𝑑𝑥
∞

𝑥

| <
𝜀

(𝑛 − 1)𝑥𝑛−1
, 𝑖𝑓 𝑥 > 𝑥0 

So that ∫ 𝐽𝑑𝑥 
∞

𝑥
 is represented asymptotically by  

∫ (
𝑎2

𝑥2 +
𝑎3

𝑥3 +
𝑎4

𝑥4 + ⋯ )
∞

𝑥
 dx = - 𝑎2𝑥−1 ∫ −

𝑎3

2
𝑥−2∞

𝑥
∫ − … . =

𝑎2

𝑥

∞

𝑥
+

𝑎3

2𝑥2 +
𝑎4

3𝑥3 + ⋯ 

Theorem 4: Let the derivative of an asymptotic expansion exists, then the expansion of 

J'(x) is the term –by term differentiation of the J(x). 

Proof: 

If  𝜙(𝑥) has a definite finite limit as x tends to   ∞, then   𝜙′(𝑥) either oscillates or 

tends to zero as a limit.     

          If  𝜙 (x) tends to a definite 1imit, we can find 𝑥0 So 

         that  |𝜙(𝑥) − 𝜙(𝑥0)| < 𝜀 if  𝑥 > 𝑥0. 

      Thus, since 𝜙′(𝜉) =
𝜙(𝑥)−𝜙(𝑋0)

𝑋−𝑋0
, where x > 𝜉 > 𝑥0,     we find  

     |𝜙′(𝜉)| <
𝜀

𝑥−𝑥0
 . So, 𝜙′(𝑥) cannot approach any definite 1imit other than zero; but the 

last inequality does not exclude oscillation, since 𝜉 may not take all values greater than 𝑥0  

as tends to ∞.     𝜙′(𝑥), if it has a definite limit, it must be zero.  

                                           J (x) ~𝑎0 +
𝑎1

𝑥
+

𝑎2

𝑥2 + ⋯ 

Then we have  

                                          lim
𝑥→∞

𝑥𝑛+1 {𝐽(𝑥) − 𝑆𝑛+1(𝑥)} 

and      

                                         lim
𝑥→∞

𝑥𝑛+1 {𝐽(𝑥) − 𝑆𝑛(𝑥) −
𝑎𝑛+1

𝑥𝑛+1} = 0. 

Therefore,  

                                        lim
𝑥→∞

𝑥𝑛+1 {𝐽(𝑥) − 𝑆𝑛(𝑥)}= 𝑎𝑛+1. 

Thus, the differential coefficient  

                              𝑥𝑛+1{𝐽′(𝑥) − 𝑆′𝑛(𝑥)} + (𝑛 + 1)𝑥𝑛{𝐽(𝑥) − 𝑆𝑛(𝑥)}  

If it has a definite limit, must tend to 0.  
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But  𝑥𝑛{𝐽(𝑥) − 𝑆𝑛(𝑥)} → 0 so that, lim𝑥𝑛+1{𝐽′(𝑥) − 𝑆′𝑛(𝑥)} = 0. That is, if J' (x) has an 

asymptotic series, it is  

                           -
𝑎1

𝑥2 −
2𝑎2

𝑥3 −
2𝑎3

𝑥4 − ⋯ .  

 

Applications 

      The theory of Poincare is extensively used in the solution of differential equations. 

As the independent variable goes to infinity along a fixed path, asymptotic series can be 

used to solve any linear differential equation with polynomial coefficients. Poincare did not 

specify the areas of validity. Horn later filled the holes in a number of particular 

circumstances.  

        Barnes and Hardy used the theory of contour integration to apply Poincare's theory 

to the asymptotic representation of functions generated by power -series. 

 

Conclusion 

This article goes through the Poincare theorem in depth. Poincare failed to 

establish his geometric theorem in 1992. The geometric proof is totally supported by the 

Poincare-Hoff index theorem. This article also shows one of its applications. 
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