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Abstract 
 

This article explores the concepts of bilinear transformation, Jacobian 

transformation, and conformal mapping, focusing on their essential properties 

and presenting key results. The discussion revolves around isogonal 

transformation, conformal transformation, Jacobian transformation, and 

bilinear transformation, as well as critical points and fixed points. 

Keywords: Isogonal transformation, Conformal transformation, Jacobian 

transformation, Bilinear transformation, Critical point, Fixed point  

 

 

 

Introduction 

             If f(x) is a real-valued function of the real variable x,  

f : x → 𝑦         (1) 

https://ejournal.yasin-alsys.org/index.php/MJAEI
https://doi.org/10.58578/MJAEI.v1i1.1970
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A mapping or transformation of points in the z-plane is the relationship specified by 

equation (1) between two points in the z-plane and w plane. Images of each other refer to 

the correspondence set of points in the two planes. The equations  

     u = u(x, y) , v = v(x, y)            (2) 

 are referred to as transformations [2]. This article deals with conformal mapping, 

Jacobians, bilinear transformations, fixed points, and normal [1,2,3].  

 

Bilinear Transformation 

It is also called linear fractional transformation. The transformation T defined as 

      w = T(z) = 
𝑎𝑧+𝑏

𝑐𝑧+𝑑
        (3) 

a,b,c, and d are complex constants ,  ad - bc≠ 0 is known as bilinear transformation. The 

constant ad-bc is determinant of bilinear transformation. Now , if ad-bc= 1 then it is 

normalized. This transformation of (i) can be written as 

cwz+dw-az-b=0         (4) 

The equation (ii) is linear both in z and w, so it is bilinear transformation. It is also called 

Mobius transformation, who first studied the same.  Complex numbers a, b, c, and d are 

called co-efficient of Mobius Transformation of S(z). The determinant  |
𝑎  𝑏
𝑐   𝑑

|  is called the 

determinant of Mobius Transformation S(z). The constants a, b, c, d   do not uniquely 

determine since,  𝜆 0 for any,  

S(z) = 
(𝜆𝑎)𝑧+(𝜆𝑏)

(𝜆𝑐)𝑧+(𝜆𝑑)
 

f' =  
𝜕𝑓

𝜕𝑧
 =  

𝑑𝑤−𝑏

−𝑐𝑤+𝑎
  does not vanish, the Möbius transformation f(z) is conformal at every 

point except its pole z = −
𝑑

𝑐
 . The inverse function z = f −1(𝑤), ( f ◦ 𝑓−1 ≡ I,   where I is 

the identity, can be computed as:  f −1(𝑤) =
𝑑𝑤−𝑏

−𝑐𝑤+𝑎
 [4].  

Product of two bilinear transformations 

Suppose two transformations  𝑇1 and 𝑇2 defined are 

𝑇1(z) = 
𝑎1𝑧+𝑏1

𝑐1𝑧+𝑑1
 ,    ( 𝑎1𝑑1 − 𝑏1𝑐1 ≠ 0)     (5) 
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𝑇1(𝜁) = 
𝑎2𝜁  +𝑏2

𝑐2 𝜁 +𝑑2
 ,    ( 𝑎2𝑑2 − 𝑏2𝑐2 ≠ 0)      (6) 

In equation (5), there is one- one correspondence between the z-plane and 𝜁  -plane. The 

transformation (ii) also maps a one to one correspondence between the z-plane and 𝜁  -

plane. Now defining a transformation from z-plane to w-plane from the relation 

          w =  𝑇2(𝑇1(𝑧))       (7) 

 

𝑇2(𝑇1(𝑧))  = 𝑇2 {
𝑎1𝑧+𝑏1

𝑐1𝑧+𝑑1
}    from equation (5) 

 

    = 
𝑎2(

𝑎1𝑧+𝑏1
𝑐1𝑧+𝑑1

)+𝑏2

𝑐2(
𝑎1𝑧+𝑏1
𝑐1𝑧+𝑑1

)+𝑑2

    = 
(𝑎2𝑎1+𝑏2𝑐1) 𝑧+(𝑎2𝑏1+𝑏2𝑑1)

(𝑐2𝑎1+𝑑2𝑐1) 𝑧+(𝑐2𝑏1+𝑑2𝑑1)
    [ From 6] 

 

    w =  𝑇2(𝑇1(𝑧))
𝛼𝑧+𝛽

𝛾𝑧+𝛿
       

 (8)  

This equation (8) denotes a bilinear transformation and is called resultant or the 

product of the two transformations. 

 

Bilinear transformation with simple geometric properties [2] 

Suppose the bilinear transformation 

 w =  
𝑎𝑧+𝑏

𝑐𝑧+𝑑
  , where ad- bc ≠ 0 , and c ≠ 0. This can be  

It may be written as  

W  = 
𝑎(𝑧+

𝑑

𝑐
)+𝑏− 

𝑎𝑑

𝑐

𝑐(𝑧
𝑑

𝑐
)

   = 
𝑎

𝑐
 + 

𝑏𝑐−𝑎𝑑

𝑐
 .

1

𝑐𝑧+𝑑 
 = 

𝑎

𝑐
 + 

𝑏𝑐−𝑎𝑑

𝑐2  .
1

𝑧+𝑐
𝑑 

This transformation can be considered as the combination of following three 

transformations  

𝑧1 = 𝑧 +
𝑑

𝑐
, 𝑧2 =  

1

𝑧1
 𝑎𝑛𝑑 𝑧3 =

𝑏𝑐−𝑎𝑑

𝑐2 𝑧2      so that  

w = 
𝑎

𝑐
+  𝑧3.This transformation of the form 𝑧1.Three auxiliary transformation 

are of the form      W= z + 𝛼, w = 
1

2
, w = 𝛽𝑧.  So, the bilinear transformation 
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is the resultant of bilinear transformation of the form    w= z + 𝛼, w = 
1

2
, w = 

𝛽𝑧  

Theorem1.The set of all bilinear transformation builds a non-abelian group 

under the product of transformations. 

Proof. The set of bilinear transformations satisfy the properties of group. 

Associativity.   (𝑇1𝑇2)𝑇3 = 𝑇1(𝑇2𝑇3) 

Existence of identity.  The identity mapping, I defined by w=I(z) = z is a 

bilinear transformation so that I serves as an identity element. 

Existence of inverse. The inverse of the transformation  

W = T(z ) = 
𝑎𝑧+𝑏

𝑐𝑧+𝑑
   is  𝑧 = 𝑇−1(𝑤) =  

𝑑𝑤−𝑏

−𝑐𝑤+𝑎 
 

 

  𝑇−1𝑇(𝑧) = 𝑇−1 (
𝑎𝑧+𝑏

𝑐𝑧+𝑑
) = 

𝑑(
𝑎𝑧+𝑏

𝑐𝑧+𝑑
)−𝑏

−𝑐 (
𝑎𝑧+𝑏

𝑐𝑧+𝑑
)+𝑎

  = 
𝑎𝑑𝑧+𝑑𝑏−𝑏𝑐𝑧−𝑏𝑑

−𝑐𝑎𝑧−𝑐𝑏+𝑐𝑎𝑧+𝑎𝑑
=  

(𝑎𝑑−𝑏𝑐)𝑧

𝑎𝑑−𝑏𝑐
= 𝑧 

            =  T𝑇−1(𝑤) = w. The set of all bilinear transformations builds a group 

under 

 the product of transformations. It is remarkable that 𝑇1𝑇2(𝑍) ≠ 𝑇2𝑇1(𝑍) 

             Fixed points of bilinear transformation [2] 

The points that coincide with their transformations under a bilinear 

transformation are said to be fixed points. 

Let the bilinear transformation defined by  

  w = 
𝑎𝑧+𝑏

𝑐𝑧+𝑑
      (ad- bc ≠ 0)       

 (9) 

Now substituting w=z   to get the fixed points of this transformation 

 z = 
𝑎𝑧+𝑏

𝑐𝑧+𝑑
 

or, c𝑧2 + (𝑑 − 𝑎)𝑧 − 𝑏 = 0       

 (10) 

Case I. Let c ≠ 0 , the roots of equation (ii) are  

z =  
(𝑎−𝑑)±√[(𝑑−𝑎)2+4𝑏𝑐 ]

2𝑐
   gives one or two finite fixed points according to  

(𝑑 − 𝑎)2 + 4𝑏𝑐 = 0      or ≠ 0 

Case II.  Let c = 0 that d ≠ 0 
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The transformation becomes w = 
𝑎

𝑑
𝑧 +

𝑏

𝑑
 . The other fixed point is  

  z =  
𝑎

𝑑
𝑧 +

𝑏

𝑑
 or,   (a-d) z+b = 0 . Hence if a – d   ≠0,  then two fixed points ∞ 

 

and
𝑏

𝑑−𝑎
  but a-d =0 gives only fixed point ∞. 

Normal form of bilinear transformation [2] 

Theorem2. Every bilinear transformation with 𝛼, 𝛽 as fixed points 𝛼, 𝛽 can be 

put in the form  

𝑤 − 𝛼

𝑤 − 𝛽
= 𝜆 

𝑧 − 𝛼

𝑧 − 𝛽
. 

Proof. Let any bilinear transformation with 𝛼, 𝛽 as fixed point and suppose it 

transforms a point  𝛾  into the point 𝛿., then the points 𝛼, 𝛽, 𝛾, 𝑧 are mapped 

into the points 𝛼, 𝛽, 𝛿, 𝑤 respectively. Since cross ratio is conserved under a 

bilinear transformation, we have   

 

( w,𝛼, 𝛿, 𝛽) = (𝑧, 𝛼, 𝛾, 𝛽)   Or,       
(𝑤−𝛼)(𝛿−𝛽)

(𝛼−𝛿)(𝛽−𝑤)
=

(𝑧−𝛼)(𝛾−𝛽)

(𝛼−𝛾)(𝛽−𝑧)
  , Conformal 

Mappings  

         Or                  
𝑤−𝛼

𝑤−𝛽
 = 

(𝛼−𝛿)(𝛽−𝛾)

(𝛽−𝛿)(𝛼−𝛾)
.

𝑧−𝛼

𝑧−𝛽
      which is the from  

                
𝑤−𝛼

𝑤−𝛽
= 𝜆  

𝑧−𝛼

𝑧−𝛽
   which   𝜆 =  

(𝛼−𝛿)(𝛽−𝛾)

(𝛽−𝛿)(𝛼−𝛾)
. 

Theorem 2.  Every bilinear transformation has only one fixed point  𝛼 can be put in the 

form 

1

𝑤−𝑧
 =  

1

𝑧−𝛼
+ 𝜆.  

Proof. Consider the transformation w = 
𝑎𝑧+𝑏

𝑐𝑧+𝑑
    and let 𝛼 is the only one finite fixed point. 

Then the equation w = 
𝑎𝑧+𝑏

𝑐𝑧+𝑑
 or,     𝑐𝑧2 + (𝑑 − 𝑎)𝑧 − 𝑏 = 0 ≡ c (𝑧 − 𝛼)2  has only one 

root 𝛼, so that  

Now, d – a = - 2𝛼𝑐 and –b = c𝛼2 

  i.e.  a = d+ 2𝛼𝑐 and b = - c𝛼2 , we can write w = 
(𝑑−2𝛼𝑐) 𝑧−𝑐𝛼2

𝑐𝑧+𝑑
 

cwz+dw= dz-2𝛼𝑐𝑧 − 𝑐𝛼2 
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c(w-𝛼) (z- 𝛼)+ c𝛼𝑤 + c𝛼𝑧 − 𝑐𝛼2+ dw = dz+2𝛼𝑐𝑧 − 𝑐𝛼2, on solving we get 

𝜆 = 
𝑐

𝑑+𝑐𝛼
  = 

𝑐

𝑑+𝑐(
𝑎−𝑑

2𝑐
)
 = 

2𝑐

𝑎+𝑑
 . 

Different transformations [5] 

There are different types of transformations i.e. elliptic, hyperbolic and parabolic 

transformations. 

(i) Elliptic transformations  

The transformation 

      w=  T(z)   = 
𝑎𝑧+𝑏

𝑐𝑧+𝑑
      

  (11) 

has to finite and   distinct fixed points 𝛼, 𝛽 if  c ≠ 0 and  

∆= ( 𝑎 − 𝑑)2 + 4𝑏𝑐 ≠ 0       

  (12) 

In this case the transformation T can be put in the from  

   w = 
𝑤−𝛼

𝑤−𝛽
 =  k  

𝑧−𝛼

𝑧−𝛽
        

  (13) 

Where k = 
𝑐𝛽+𝑏

𝑐𝛼+𝑑
≠ 0 𝑖𝑠  a finite constant. 

If  |𝑘| = 1, the transformation is said to be elliptic. In this case  

|
𝑤 − 𝛼

𝑤 − 𝛽
| = |

𝑧 − 𝛼

𝑧 − 𝛽
| 

 Every circle of the first kind in the Steiner system with limiting points 𝛼, 𝛽  is left 

invariant. Under this mapping, then, the point's z ''flow'' along these invariant 

circles in such a way that circles of the second kind pass over into one another.  

If c = 0.  and   ∆ ≠ 0, the second fixed point is at infinity and the transformation 

takes the form  

          w – 𝛼 =k ( z- 𝛼 )        

  (14)  

where k = 
𝑎

𝑏
 = 1. That is, |𝑎| =  |𝑑|.  Here the transformation (ii) represents a 

rotation (through the angle  arg k ) about the fixed point  𝛼. 
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(ii) Hyperbolic transformations 

Let  ∆≠ 0, 𝑐 ≠ 0  k be real and positive so that arg k =0.  

Then (13) gives  arg (
𝑤−𝛼

𝑤−𝛽
) = arg 𝑘 + arg

𝑧−𝛼

𝑧−𝛽
= 𝑎𝑟𝑔

𝑧−𝛼

𝑧−𝛽
. 

Thus, in this case the circles of the second kind in the Steiner system belonging 

to the limit to the limit points 𝛼, 𝛽 are left invariant while the circles of the first 

kind go over into one another. The transformation therefore represents ''flow'' 

along the circles of the second kind. A transformation of this type is called 

hyperbolic. If  c = 0, ∆≠ 0, one of the points say 𝛽 𝑖𝑠  of  at infinity and the 

transformation is of the form (3) it  is hyperbolic  when  arg k  = arg
𝑎

𝑑
=

𝑎𝑟𝑔 𝑑 = 0.  

(iii) Parabolic transformations.  

If ∆ = (𝑎 − 𝑏)2 + 4bc = D, then he transformation (11) is called  

Parabolic.  

First, let c = 0. Then a  = d  ≠ 0 and the linear transformation  

(i) get the form  

 

w = z + 
𝑏

𝑑′
,   

𝑏

𝑑
 ≠ ∞       

  (15) 

If  
𝑏

𝑑
  = 0, that  is,  b = 0 then (v)  reduces  to  an  identity transformation. 

Then every point is a fixed point. In case
𝑏

𝑑
≠ 0, Represents a simple 

translation. In this case the only fixed point is at ∞. The straight lines𝐿1 in 

the direction   
𝑏

𝑑
 are stream lines, their perpendiculars the lines  𝐿2pass over 

into one another under the flow.  Now let  ∆ = 0, 𝑐 ≠ 0.   

𝛼 =
𝑎−𝑑

2𝑐
. This has the only fixed point of the parabolic transformation, 

since the point z = ∞ is transformed into w =   
𝑎

𝑐
 so that ∞ is not a fixed 

point. In this case the transformation can be represented in the form  

1

𝑤−𝛼
=

1

𝑧−𝛼
+ 𝜆               where             𝜆 =

2𝑐

𝑎+𝑑
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Jacobians [1,4,5] 

          The transformation 

          w = f(z), i.e. u = u(x, y), v = v(x, y) maps a closed region D of the z- plane into a 

closed region D' of the w-plane. Suppose ∆𝑧 and ∆𝑤 denote the area of these regions. Also 

let u and v are continuously differentiable, then     lim
∆𝑧→0

∆𝑤

∆𝑧
 =  |

𝜕(𝑢,𝑣)

𝜕(𝑥,𝑦)
| then the determinant 

            = 
𝜕(𝑢,𝑣)

𝜕(𝑥,𝑦)
=  |

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

| =  
𝜕𝑢

𝜕𝑥
.

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦
.

𝜕𝑣

𝜕𝑥
 is said to be jacobians of the transformation. 

If f(z) is an analytic function, then using Cauchy- Riemann equations, then   

𝜕(𝑢,𝑣)

𝜕(𝑥,𝑦)
 =  

𝜕𝑢

𝜕𝑥
 .

𝜕𝑢

𝜕𝑥
-   

𝜕𝑢

𝜕𝑦
 (−

𝜕𝑢

𝜕𝑦
)  

𝜕(𝑢,𝑣)

𝜕(𝑥,𝑦)
=  (

𝜕𝑢

𝜕𝑥
)

2
+ (

𝜕𝑢

𝜕𝑥
)

2
=  |

𝜕𝑢

𝜕𝑥
+ 𝑖 

𝜕𝑢

𝜕𝑦
|

2
=   |𝑓′(𝑧) |2 . 

 If 𝑢1, 𝑢2, 𝑢3 ⋯ ⋯ 𝑢𝑛 are functions of n variables of 𝑥1, 𝑥2, 𝑥3 ⋯ ⋯ 𝑥𝑛 then the 

determinant  

 

 
|
|

𝜕𝑢1

𝜕𝑥1

𝜕𝑢1

𝜕𝑥2
⋯ ⋯

𝜕𝑢1

𝜕𝑥𝑛

𝜕𝑢2

𝜕𝑥1

𝜕𝑢2

𝜕𝑥2
⋯ ⋯

𝜕𝑢2

𝜕𝑥𝑛
 

𝜕𝑢𝑛

𝜕𝑥1
 

𝜕𝑢𝑛

𝜕𝑥2
 ⋯ ⋯

𝜕𝑢𝑛

𝜕𝑥𝑛
 

|
|
    is called Jacobean of 𝑢1, 𝑢2, 𝑢3 ⋯ ⋯ 𝑢𝑛with respect to 

𝑥1, 𝑥2, 𝑥3 ⋯ ⋯ 𝑥𝑛 and is represented by 
𝜕(𝑢1,𝑢2,𝑢3⋯⋯𝑢𝑛)

𝜕(𝑥1,𝑥2,𝑥3⋯⋯𝑥𝑛)
  or J (𝑢1, 𝑢2, 𝑢3 ⋯ ⋯ 𝑢𝑛). 

Necessary and sufficient condition for a Jacobian to vanish [1,6,7] 

 Theorem 3. 

Let 𝑢1, 𝑢2, … , 𝑢𝑛 be function of n independent variables 𝑥1, 𝑥2, … . . , 𝑥𝑛. In order that 

there may exist between these n function a relation,                

F (𝑢1, 𝑢2, … , 𝑢𝑛) = 0,  

It is necessary and sufficient that the Jacobian 

𝜕 (𝑢1, 𝑢2, … , 𝑢𝑛)

𝜕 (𝑥1, 𝑥2, … . . , 𝑥𝑛)
 

should vanish identically. 
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Proof. The condition is necessary i.e.  if there exists between 𝑢1, 𝑢2, … , 𝑢𝑛  a  relation  

𝐹(𝑢1, 𝑢2, ⋯ ⋯ 𝑢𝑛) = 0,        

 (i) 

there Jacobean is zero. Differentiating (i), we get ,
𝜕𝐹

𝜕𝑢1
.

𝜕𝑢1

𝜕𝑥1
+  

𝜕𝐹

𝜕𝑢2
 .

𝜕𝑢2

𝜕𝑥1
+  … +  

𝜕𝐹

𝜕𝑢𝑛
 .

𝜕𝑢𝑛

𝜕𝑥1
=

0
𝜕𝐹

𝜕𝑢1
 .

𝜕𝑢1

𝜕𝑥2
+  

𝜕𝐹

𝜕𝑢2
 .

𝜕𝑢2

𝜕𝑥2
+  … +  

𝜕𝐹

𝜕𝑢𝑛
 .

𝜕𝑢𝑛

𝜕𝑥2
= 0 

                    …        …     …      …         … 

𝜕𝐹

𝜕𝑢1
 .

𝜕𝑢1

𝜕𝑥𝑛
+  

𝜕𝐹

𝜕𝑢2
 .

𝜕𝑢2

𝜕𝑥𝑛
+  … +  

𝜕𝐹

𝜕𝑢𝑛
 .

𝜕𝑢𝑛

𝜕𝑥𝑛
= 0. 

 Eliminating 
𝜕𝐹

𝜕𝑢1
 ,

𝜕𝐹

𝜕𝑢2
, … ,

𝜕𝐹

𝜕𝑢𝑛
, 𝑤𝑒 𝑔𝑒𝑡

|
|

𝜕𝑢1

𝜕𝑥1

𝜕𝑢2

𝜕𝑥1
…

𝜕𝑢𝑛

𝜕𝑥1

𝜕𝑢1

𝜕𝑥2

𝜕𝑢2

𝜕𝑥2
…

𝜕𝑢𝑛

𝜕𝑥2

𝜕𝑢1

𝜕𝑥𝑛

𝜕𝑢2

𝜕𝑥𝑛
⋯

𝜕𝑢𝑛

𝜕𝑥𝑛

|
|

=   
𝜕(𝑢1,𝑢2,⋯⋯𝑢2)

𝜕(𝑥1,   𝑥2,⋯⋯,𝑥𝑛)
= 0          . 

Condition is sufficient i.e., if the Jacobean   J(𝑢1, 𝑢2, ⋯ ⋯ 𝑢𝑛) is zero, the there must 

exist a relation between  𝑢1, 𝑢2, … , 𝑢𝑛. The equations connection the functions ( 

𝑢1, 𝑢2 ⋯ ⋯ 𝑢𝑛)  and the variables 𝑥1, 𝑥2, … , 𝑥𝑛 are always able of being of being 

transformed into the following forms:  𝜙1( 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑢1 ) = 0,  𝜙2( 𝑥2, 𝑥3, … , 𝑥𝑛, 

𝑢1, 𝑢2 ) = 0,  ⋯           ⋯         ⋯        ⋯ 

𝜙𝑟( 𝑥𝑟 , 𝑥𝑟+1, … , 𝑥𝑛, 𝑢1, 𝑢2, … , 𝑢𝑟 ) = 0, ⋯        ⋯            ⋯        ⋯ 

𝜙𝑛( 𝑥𝑛, 𝑢1 ,𝑢2  … , 𝑢𝑛, ) = 0.  Then, we have  J = 
𝜕(𝑢1,𝑢2,…..,𝑢𝑛)

𝜕(𝑥1,   𝑥2,…,𝑥𝑛)
 = (-1)𝑛

𝜕𝜙1
𝜕𝑥1

.
𝜕𝜙2
𝜕𝑥2

⋯ 
𝜕𝜙𝑟
𝜕𝑥𝑟

 ⋯
𝜕𝜙𝑛
𝜕𝑥𝑛

𝜕𝜙1 
𝜕𝑢1

.
𝜕𝜙2
𝜕𝑢2

,⋯ 
𝜕𝜙𝑛
𝜕𝑢𝑛

 

Now, if  J = 0, we have  
𝜕𝜙1

𝜕𝑥1
.

𝜕𝜙2

𝜕𝑥2
⋯ 

𝜕𝜙𝑟

𝜕𝑥𝑟
 ⋯ 

𝜕𝜙𝑛

𝜕𝑥𝑛
= 0,  i.e.  

𝜕𝜙𝑟

𝜕𝑥𝑟
= 0 ,for some value of r 

between 1 and n. Hence, for that particular value of r the function 𝜙𝑟 , must not contain,  

𝑥𝑟  ; and accordingly the corresponding equation is of the form 𝜙𝑟(𝑥𝑟+1  ,

… . , 𝑥𝑛,   𝑢1, 𝑢2 … . . , 𝑢𝑟) = 0. 

Consequently, between this and the remaining equations 𝜙𝑟+1 = 0, 𝜙𝑟+2 = 0, … . , 𝜙𝑛 =

0, 

The variables            𝑥𝑟+1 = 0, 𝑥𝑟+2 , … . , 𝑥𝑛can be eliminated so as to give a find equation 

between      𝑥1,   𝑢2, . . . . , 𝑢𝑛 .  
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Conformal Mapping 

A geometrical categorization of complex analytic functions is that they retain angles at non-

critical locations. Conformal mapping is the mathematical word for this characteristic. Co 

formality makes sense for any inner product space, however in practice it is commonly 

applied to Euclidean space with the conventional dot product.  A function f: 𝑅𝑛 → 𝑅𝑛 is 

called conformal if it preserves angles. But what exactly does "preserve angles" mean? The 

angle between two vectors in the Euclidean norm is defined by their dot product. 

However, because most analytic maps are nonlinear, they will not map vectors to vectors 

and will instead map straight lines to curves. However, if we define "angle" as the angle 

formed by two curves. As a result, complicated functions must be realized as conformal 

maps. Isogonal mappings retain the magnitude of angles but not necessarily the meaning. A 

mapping which preserves the magnitude of angles but not necessarily the sense is called 

isogonal. 

Sufficient conditions for w = f(z) represent a conformal mapping 

Theorem4. Suppose f(z) be an analytic function of z in a region D of the z-plane and let 

f'(z)  ≠ 0 inside D. Then the mapping w = f(z) is conformal at the points of D. 

Proof: Let  𝑧0 be an interior point of the region D and let 𝐶1 𝑎𝑛𝑑 𝐶2 be two continuous 

curves passing through 𝑍0 making angles 𝑎1𝑎𝑛𝑑 𝑎2 respectively with the real axis. Taking 

the point 𝑍1 𝑎𝑛𝑑 𝑍2 on the curves 𝐶1 𝑎𝑛𝑑 𝐶2 at the same distance r from the point 

𝑍0where r is small. Then we can write [1,6,7] 

𝑍1 − 𝑍0= 𝑟𝑒𝑖𝜃
1and 𝑧2 −  𝑧0 =𝑟𝑒𝑖𝜃

2. 

        As r⟶ 0,   𝜃1 ⟶ 𝑎1𝑎𝑛𝑑 𝜃2  ⟶ 𝑎2. 

Now as a point moves from𝑍0 𝑎𝑛𝑑 𝑍1along 𝐶1, the image point moves along  Γ1 in the w-
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plane 𝑤0 𝑡𝑜 𝑤1. Similarly, as a point moves from𝑍0 𝑎𝑛𝑑 𝑍2along 𝐶2, the image point 

moves along Γ2from 𝑊0 𝑡𝑜𝑊2. Consider that  

𝑤1 −  𝑤0 = 𝑝1𝑒𝑖𝜙
1, 𝑎𝑛𝑑  𝑤2 −  𝑤0 =  𝑝2𝑒𝑖𝜙

2 . 

Since f(z) is analytic, we have  

lim
𝑍1 → 𝑍0

𝑊1 −𝑊0

𝑍1− 𝑍0
= f' (𝑧0) 

As f' (𝑧0) ≠ 0, we may writef ′(𝑧0) = 𝑅0𝑒𝑖𝜙
0. 

Necessary conditions for w = f(z) to represent a conformal mapping [2] 

Theorem5.  If w = f(z) represent a conformal transformation of a domain D in the z- 

plane into a domain D of the w –plane then f(z) is an analytic function of z in D. 

Proof. Now, u+ iv = u(x, y) + iv(x, y)  then u = u(x, y) and v= v(x, y) 

Let ds and d𝛼 denote elementary arc lengths in the z-plane and w-plane 

respectively. Then d 𝑠2= d 𝑥2 + d 𝑦2 and d 𝛼2= d 𝑢2 +d 𝑣2. 

du =  
𝜕𝑢

𝜕𝑥
𝑑𝑥 + 

𝜕𝑢

𝜕𝑦
𝑑𝑦  and dv =  

𝜕𝑣

𝜕𝑥
𝑑𝑥 + 

𝜕𝑣

𝜕𝑦
𝑑𝑦  

Now, d𝛼2 = (
𝜕𝑢

𝜕𝑥
𝑑𝑥 +  

𝜕𝑢

𝜕𝑦
𝑑𝑦 )

2
+ (

𝜕𝑣

𝜕𝑥
𝑑𝑥 +  

𝜕𝑣

𝜕𝑦
𝑑𝑦 )

2
 

Or, d𝛼2= E d𝑥2 + 2F dxdy+ Gd𝑦2 

Where E = (
𝜕𝑢

𝜕𝑥
)

2
+(

𝜕𝑣

𝜕𝑥
)

2
,  F =  

𝜕𝑢

𝜕𝑥
.

𝜕𝑢

𝜕𝑦
 + 

𝜕𝑣

𝜕𝑥
.

𝜕𝑣

𝜕𝑦
. 

G = (
𝜕𝑢

𝜕𝑌
)

2
+(

𝜕𝑣

𝜕𝑌
)

2
 

Now,  : d s is independent of direction if 

𝐸

1
 = 

𝐹

0
 = 

𝐺

1
 = (ℎ)2  (suppose) , 

where h depends on x and y only and is not zero. So, the conditions for an 

isogonal transformation are (
𝜕𝑢

𝜕𝑥
)

2
+(

𝜕𝑣

𝜕𝑥
)

2
=  (ℎ)2= (

𝜕𝑢

𝜕𝑌
)

2
+(

𝜕𝑣

𝜕𝑌
)

2
  

  (16) 

 

𝜕𝑢

𝜕𝑥
.

𝜕𝑢

𝜕𝑦
 + 

𝜕𝑣

𝜕𝑥
.

𝜕𝑣

𝜕𝑦
= 0         

 (17) 

 The equation (16) are satisfied if we arranged  
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𝜕𝑢

𝜕𝑥
 = h cos 𝛼 ,      

𝜕𝑣

𝜕𝑥
  =  h sin 𝛼 , 

𝜕𝑢

𝜕𝑦
  =  h sin 𝛽 and  

𝜕𝑣

𝜕𝑦
  =  h sin 𝛽 

Then substituting these values in (17), 

(ℎ)2( cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽) =0  

 

cos(𝛼 − 𝛽) = 0, where h ≠ 0. Now taking 𝛼 − 𝛽= 
𝜋

2
 , i.e. 𝛼 = 𝛽 +

𝜋

2
 

𝜕𝑢

𝜕𝑥
=  hcos (

𝜋

2
+ 𝛽) = - h sin𝛽,  

𝜕𝑣

𝜕𝑥
 =  h sin (

𝜋

2
+ 𝛽) = - h cos𝛽.  

 

𝜕𝑢

𝜕𝑦
=  hcos𝛽,  

𝜕𝑣

𝜕𝑦
 =  h sin𝛽.  

So,  
𝜕𝑢

𝜕𝑥
 = -  

𝜕𝑣

𝜕𝑦
,  

𝜕𝑣

𝜕𝑥
 =  

𝜕𝑢

𝜕𝑦
       

 (18) 

Similarly taking 𝛼 − 𝛽 = −
𝜋

2
, i.e. 𝛼 = 𝛽 −

𝜋

2
 

𝜕𝑢

𝜕𝑥
 =   

𝜕𝑣

𝜕𝑦
,  

𝜕𝑣

𝜕𝑥
 = -  

𝜕𝑢

𝜕𝑦
       

 (19) 

The equations  (19) are the well-known Cauchy-Riemann equations, which demonstrate 

that f(z) is an analysis function of z. If we substitute -v for v, that is, if we take the image 

figure formed by the reflection in the real axis of the w-plane, the equations (18) simplify to 

(19). Thus, if equation (18) corresponds to an isogonal but not a conformal transformation 

w = f(z), then f(z) must be an analytic function of z.  

 

Conclusion 

A transformation is said to isogonal if two curves in the z – plane intersecting at the point 

𝑧𝑜 at an angle 𝜃 are transformed into two corresponding curves in the w – plane 

intersecting at the point 𝑤𝑜 which corresponds to the point 𝑧0 at the same angle𝜃 . If the 

sense of the rotation as well as magnitude of the angle is preserved, then the 

transformation is called conformal.  In this case, the magnitude of the angles of a 

transformation is conserved but their sign is changed.  In this case, the magnitude of the 

angles of a transformation is conserved but their sign is changed. For example, consider the 

transformation w = x – iy and z = x + iy Therefore, w = x – iy is the reflection of z in the 

real axis where angles are conserved but their signs are changed. 
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