CONTRACTION TYPE EXPANSIVE MAP ON COMPLEX VALUED METRIC SPACE WITH FIXED POINTS

Surendra Kumar Tiwari¹, Bindeshwari Sonant², S.K. Sahani³
¹²Dr. C. V. Raman University, Kota Bilaspur, India
³M.I.T. Campus, Janakpur, Janakpur, Nepal
sk10tiwari@gmail.com; Bindeshwarikurre04@gmail.com

Abstract

According to the present paper, the two self mappings that satisfy contraction type conditions of expansive in complete complex valued metric space reveals that these mappings have some common fixed points. Furthermore, the paper provides generalizations and extensions of well-known results from the existing literature which further expands our understanding of this topic. Some illustrative examples are given to help us obtain results.

Keywords: Expansive Mapping, Stationary (Fixed) Point, Common Stationary Point, Complete Complex Valued Metric Space

INTRODUCTION

A significant result regarding contractions in complete metric spaces was established by Banach, S. (1922). Initially, Machuca (1967) developed a model of fixed points in expansive mappings, later extended by Jungck (1976) to address numerous other types of expansive mappings. Wang et al. (1984) used expanding mappings to demonstrate theorem of fixed point under complete metric spaces. As early, Daffer and Kaneko (1992) proved a
pair of mappings by defining expanding status as under complete metric spaces at a common stationary(or fixed) point.

Furthermore, the manuscript provides generalizations and extensions of well-known results from the existing literature which further expands our understanding of this topic.

PRELIMINARY NOTES

As a starting point, let's discuss the features of cone-metric spaces, including their definition.

Presume that, ξ_1, ξ_2 be a any two complex numbers with their the set \mathbb{C} and \le be ordered partially under \mathbb{C}, then consider as below:

$\xi_1 \preceq \xi_2$ if an only if $\Re(\xi_1) \leq \Re(\xi_2)$ and $\Im(\xi_1) \leq \Im(\xi_2)$

As a result, we are able to deduce $\xi_1 \preceq \xi_2$ whenever anyone circumstances are accomplished

(i) $\Re(\xi_1) = \Re(\xi_2), \Im(\xi_1) < \Im(\xi_2)$;
(ii) $\Re(\xi_1) < \Re(\xi_2), \Im(\xi_1) = \Im(\xi_2)$;
(iii) $\Re(\xi_1) < \Re(\xi_2), \Im(\xi_1) < \Im(\xi_2)$;
(iv) $\Re(\xi_1) = \Re(\xi_2), \Im(\xi_1) = \Im(\xi_2)$;

When $\xi_1 \preceq \xi_2$ and $\xi_1 \neq \xi_2$, then condition of (i), (ii) and (iii) are gratified, and if (iii) is only rewarding, then correspond to $\xi_1 < \xi_2$. Take note of the fact that,

(a) If $0 \preceq \xi_1 \preceq \xi_2$, then $|\xi_1| < |\xi_2|$,

(b) if \(\xi_1 \preceq \xi_2 \) and \(\xi_2 \prec \xi_3 \), then \(\xi_1 \prec \xi_3 \).

(c) \(\alpha, \beta \in \mathbb{R} \) and \(\alpha \leq \beta \), then \(\alpha \xi \preceq \beta \xi, \forall \xi \in \mathbb{C} \).

Definition 1 [3]: Setting an operator as function \(d: Y \times Y \to \mathbb{C} \) such that gratify some circumstances as below:

(i) \(0 \preceq d(a, b), \forall a, b \in Y, \) and \((a, b) = 0 \iff a = b \);

(ii) \(d(a, b) = d(b, a), \forall a, b \in Y \);

(iii) \(d(a, b) \preceq d(a, c) + d(c, b), \forall a, b, c \in Y \).

Then we can say pair \((Y, d) \) is well-known CVMS where \(d \) be CVM on \(Y \).

Example 2: Presuming that an operator \(d: Y \times Y \to \mathbb{C} \) on \((Y, d) \) and \(Y = \mathbb{C} \) specified by \(d(\xi_1, \xi_2) = e^{it}|\xi_1 - \xi_2| \), where \(\xi_1 = (a, b) \) and \(\xi_2 = (c, d) \) at \(\left[0, \frac{\pi}{2} \right] \).

As condition \((Y, d) \) be a CVMS.

Definition 3 [3]: Assume we have \(\{\lambda_k\} \) been a sequence on \((Y, d) \) and \(\lambda \in Y \). Then we can say that

(i) \(\{\lambda_k\} \) is convergent to \(\lambda \), through \(c \in \mathbb{C} \) with \(0 < c \), we have \(k \in \mathbb{N} \) such that \(d(\lambda_k, \lambda) < c, \forall \lambda > k \), Presented by \(\lambda_k \to \lambda \) as \(k \to \infty \) or \(\lim_{k \to \infty} \lambda_k = \lambda \);

(ii) Additionally, \(\{\lambda_k\} \) is sequence of Cauchy, through \(c \in \mathbb{C} \) and \(0 < c \), we have \(k \in \mathbb{N} \) such that \(d(\lambda_k, \lambda_{k+l}) < c, \forall \lambda > k \) and \(l \in \mathbb{N} \);

(iii) When each Cauchy sequence converges, in \((Y, d) \), so, \((Y, d) \) will be considered Complete CVMS.

Lemma 4 [3]: Presume that \(\{\lambda_k\} \in Y \) is a sequence on \((Y, d) \), then sequence \(\{\lambda_k\} \) converges to \(\lambda \) if that’s the case \(|d(\lambda_k, \lambda)| \), like \(k \to \infty \).

Lemma 5 [23]: Presume that \(\{\lambda_k\} \in Y \) is a sequence on \((Y, d) \), then sequence \(\{\lambda_k\} \) is a Cauchy sequence if and only if \(|d(\lambda_k, \lambda_{k+l})| = 0 \), where \(l \in \mathbb{N} \).

Lemma 6 [20] If \(\{\lambda_k\} \) converges to \(\lambda \in Y \), and \(\{\delta_k\} \) converges to \(\delta \in Y \) over \((Y, d) \), then

\[
\lim_{k \to \infty} d(\lambda_k, \delta_k) = d(\lambda, \delta); \quad \lim_{k \to \infty} |d(\lambda_k, \delta_k)| = |d(\lambda, \delta)|.
\]

In particular, for any fixed element \(u \in Y \), the following holds

\[
\lim_{k \to \infty} d(\lambda_k, u) = d(\lambda, u); \quad \lim_{k \to \infty} |d(\lambda_k, u)| = |d(\lambda, u)|.
\]
Lemma 7: Assume that \(\{ \lambda_k \} \) be a Cauchy sequence on \((Y, d)\). If \(\exists \ 0 \leq h < 1 \) through for all \(k \in \mathbb{N} \)

\[
d(\lambda_{k+1}, \lambda_k) \leq hd(\lambda_k, \lambda_{k-1}).
\]

MAIN RESULTS

Theorem 8: Suppose that the two continuous onto mappings \(L_1 \) and \(L_2 : Y \to Y \) on complete CVMS \((Y, d)\). Suppose \(\eta \geq -1, \beta + \gamma \geq 0, \alpha + \gamma \geq 0 \) and \(\frac{1}{2} < \gamma \leq 1 \), are constants, with \(\alpha + \beta + \gamma + \eta > 1 \). For all \(\lambda, \delta \in Y \), the condition holds as follows

\[
d(L_1 \lambda, L_2 \delta) + \alpha d(\lambda, L_1 \lambda) + \beta d(\delta, L_2 \delta) + \gamma [d(\lambda, L_1 \lambda) + d(\delta, L_2 \delta)] \geq \eta \ d(\lambda, \delta) \ldots
\]

(8.1)

Then, it can be determining that \(L_1 \) and \(L_2 \) are common stationary point in \(Y \) as unique.

Proof: Consider \(\lambda_0 \in Y \). We also have two onto function \(L_1 \) and \(L_2 \), \(\exists \lambda_1, \lambda_2 \in X \) such that

\[
L_1(\lambda_1) = \lambda_0, \text{ and } L_2(\lambda_2) = \lambda_1.
\]

From here, we can define two sequences \(\{ \lambda_{2k} \} \) and \(\{ \lambda_{2k+1} \} \) by

\[
\lambda_{2k} = L_1 \lambda_{2k+1}, \text{ some } k = 0,1,2,3 \ldots
\]

and

\[
\lambda_{2k+1} = L_2 \lambda_{2k+2}, \text{ some } k = 0,1,2,3 \ldots
\]

Remark that, \(\lambda_{2k} = \lambda_{2k+1} \) for \(k \geq 1 \), then it is fixed point of \(L_1 \) and \(L_2 \).

Currently put \(\lambda = \lambda_{2k+1} \) and \(\delta = \lambda_{2k+2} \), in (8.1) we gain

\[
(\eta - \beta - \gamma)d(\lambda_{2k+2}, \lambda_{2k+1}) \geq 0.
\]

Hence,

\[
|d(\lambda_{2k+2}, \lambda_{2k+1})| \geq 0 \Rightarrow d(\lambda_{2k+2}, \lambda_{2k+1}) = 0. \] Since \(\beta + \gamma > \eta \). So, \(\lambda_{2k+2} = \lambda_{2k+1} \).

Thus \(L_1 \lambda_{2k+2} = \lambda_{2k+2} = \lambda_{2k+1} = L_2 \lambda_{2k+2} = L_2 \lambda_{2k+1} \). Implies that \(\lambda_{2k+1} \) is common fixed point of \(L_1 \) and \(L_2 \).

If there exists \(k \) such that \(\lambda_{2k+2} = \lambda_{2k+1} \), then we put \(\lambda = \lambda_{2k+3} \), \(\delta = \lambda_{2k+2} \) in (8.1) we get

\[
d(\lambda_{2k+2}, \lambda_{2k+1}) + \alpha d(\lambda_{2k+3}, \lambda_{2k+2}) + \beta d(\lambda_{2k+2}, \lambda_{2k+1}) + \gamma [d(\lambda_{2k+3}, \lambda_{2k+2}) + d(\lambda_{2k+2}, \lambda_{2k+1})] \geq \eta d(\lambda_{2k+3}, \lambda_{2k+2})
\]

This implies \((\eta - \alpha - \gamma)d(\lambda_{2k+3}, \lambda_{2k+2}) \geq 0 \), hence \(|d(\lambda_{2k+3}, \lambda_{2k+2})| \geq 0 \).

Since \(\beta + \gamma > \eta \). Therefore, \(|d(\lambda_{2k+3}, \lambda_{2k+2})| = 0 \Rightarrow d(\lambda_{2k+3}, \lambda_{2k+2}) = 0, \)
i.e. \(\lambda_{2k+3} = \lambda_{2k+2} \). Hereby, \(L_2 \lambda_{2k+2} = \lambda_{2k+1} = \lambda_{2k+2} = L_1 \lambda_{2k+3} = L_1 \lambda_{2k+2} \).

Implies that, \(\lambda_{2k+2} \) is common fixed point of \(L_1 \) and \(L_2 \).

Hence from now on, we presume that \(\lambda_{2k} \neq \lambda_{2k+1}, \forall k = 0, 1, 2, \ldots \).

Now taking \(\lambda = \lambda_{2k+1}, \delta = \lambda_{2k+2} \) in (8.1), we get

\[
d(\lambda_{2k+1}, \lambda_{2k}) \geq \frac{\eta - \beta - \gamma}{1 + \alpha + \gamma} d(\lambda_{2k+1}, \lambda_{2k+2})
\]

Hence,

\[
|d(\lambda_{2k+1}, \lambda_{2k+2})| \leq \frac{1 + \alpha + \gamma}{\eta - \beta - \gamma} |d(\lambda_{2k+1}, \lambda_{2k+2})| \quad (8.2)
\]

Similarly, we can obtain that

\[
|d(\lambda_{2k+3}, \lambda_{2k+2})| \leq \frac{1 + \beta + \gamma}{\eta - \beta - \gamma} |d(\lambda_{2k+2}, \lambda_{2k+1})| \quad (8.3)
\]

Now let \(h = \max \left\{ \frac{1 + \beta + \gamma}{\eta - \alpha - \gamma}, \frac{1 + \alpha + \gamma}{\eta - \beta - \gamma} \right\} \). Then \(0 < h < 1 \), and from (8.2) and (8.3)

\[
|d(\lambda_{2k+2}, \lambda_{2k+1})| \leq h |d(\lambda_{2k+1}, \lambda_{2k})| \quad (8.4)
\]

Hence, by Lemma 7, \(\{\lambda_{2k}\} \) corresponds to the Cauchy sequence over \((Y, d) \) as well as also complete \(\exists \lambda^* \in Y \) such that

\(\lambda_{2k} \to \lambda^* \), as \(k \to \infty \), given \(L_2 \) is continuous and onto mapping there exists a point \(\lambda^{**} \) in \(X \) by through

\(\lambda^{**} \in L_2^{-1}(\lambda^*) \) i.e. \(\lambda^* = L_2(\lambda^{**}) \), \(\lambda_{2k+1} \to L_2 \lambda^{**} \) and \(\lambda_{2k} \to L_2 \lambda^{**} \).

Taking \(\lambda = \lambda_{2k+1} \) and \(\delta = \lambda^{**} \) in (8.1) we get

Now Consider

\[
d(\lambda_{2k}, L_2 \lambda^{**}) + \alpha d(\lambda_{2k+1}, \lambda_{2k}) + \beta d(\lambda^{**}, L_2 \lambda^{**}) + \eta [d(\lambda_{2k+1}, \lambda_{2k}) + d(\lambda^{**}, L_2 \lambda^{**})]
\]

\[
\geq \eta d(\lambda_{2k+1}, \lambda^{**})
\]

Hence

\[
|d(\lambda_{2k}, L_2 \lambda^{**})| + \alpha |d(\lambda_{2k+1}, \lambda_{2k})| + \beta |d(\lambda^{**}, L_2 \lambda^{**})|
\]

\[
+ \eta [d(\lambda_{2k+1}, \lambda_{2k}) + d(\lambda^{**}, L_2 \lambda^{**})]
\]

\[
\geq \eta |d(\lambda_{2k+1}, \lambda^{**})|
\]

Let \(k \to \infty \), then by Lemma 6, the above inequality becomes

\((\beta + \gamma - \eta)|d(L_2 \lambda^{**}, \lambda^*)| \geq 0 \). Since \(\eta \leq \beta + \gamma \). so, \(|d(L_2 \lambda^{**}, \lambda^*)| = 0 \).

\(\Rightarrow d(L_2 \lambda^{**}, \lambda^*) = 0 \Rightarrow L_2 \lambda^{**} = \lambda^* \). In similar manner, we can prove that \(L_1 \lambda^{**} = \lambda^* \).

As results, \(L_1 \lambda^{**} = \lambda^* = L_2 \lambda^{**} \). Thus both \(L_1 \) and \(L_2 \) have \(\lambda^* \) as their common stationary points.
Now to demonstrate uniqueness, assume that, \(v = L_1 v = L_2 v \) holds, where \(v \) be additional common fixed point of \(L_1 \) & \(L_2 \). Now Taking \(\lambda = \lambda^{**} \) and \(\delta = v \) in (8.1), we get

\[
1-(\eta + \alpha + \beta) d(\lambda^{**}, v) \geq 0.
\]

Therefore, \(1-(\eta + \alpha + \beta)|d(\lambda^{**}, v)| \geq 0 \). Because \((\eta + \alpha + \beta) < 1 \). So, \(|d(\lambda^{**}, v)| = 0 \).

\[\Rightarrow d(\lambda^{**}, v) = 0 \Rightarrow \lambda^{**} = v.\]

Thus both \(L_1 \) and \(L_2 \) have \(\lambda^{*} \) as their common stationary points with unique. Complete proof of this theorem.

The following Corollary obtain, if \(\alpha = \beta = 0 \) and \(\gamma = \alpha \) and \(\eta = \beta \) in Theorem 8.

Corollary 9: Suppose that the two continuous onto mappings \(L_1 \) and \(L_2 : X \to X \) on \((Y, d)\). Suppose \(\alpha \geq 0 \), is constants, and \(\alpha + \beta > 1 \). For all \(\lambda, \delta \in Y \), the condition holds as follows

\[
d(L_1 \lambda, L_2 \delta) + \alpha [d(\lambda, L_1 \lambda) + d(\delta, L_2 \delta)] \geq \beta d(\lambda, \delta) \ldots (9.1)
\]

Then, It has been determined that there exists a unique stationary point in \(Y \) that is common to \(L_1 \) and \(L_2 \).

The following Corollary obtain, if \(\alpha = 0 \) in corollary 9.

Corollary 10: Suppose that the two continuous onto mappings \(L_1 \) and \(L_2 : Y \to Y \) on \((Y, d)\) Suppose \(\eta \geq -1 \). For all \(\lambda, \delta \in Y \), the condition holds as follows

\[
d(L_1 \lambda, L_2 \delta) \geq \eta d(\lambda, \delta) \ldots (10.1)
\]

Then, It has been determined that there exists a unique stationary point in \(Y \) that is common to \(L_1 \) and \(L_2 \).

To clarify the result mentioned earlier, we provide an instance.

Example 11: Suppose \(Y = [0, \infty) \) with function \(d:Y \times Y \to \mathbb{C} \) define by

\[
d(\lambda, \delta) = |\lambda - \delta|e^{i\theta}, \theta = tan^{-1}\frac{\delta}{\lambda}.
\]

Then \((Y,d)\) represent to be metric space with complex valued. Now considering

\[
\eta(\lambda, \delta) = \begin{cases}
1, & \text{if } \lambda, \delta \in [0,1] \\
\frac{3}{2}, & \text{Otherwise.}
\end{cases}
\]

Now, describe a function \(L_1, L_2: Y \to CB(Y) \) by

\[
\begin{cases}
[0, \frac{\lambda}{2}], & \text{if } \lambda, \delta \in [0,1] \\
[0, \frac{\lambda}{2}], & \text{Otherwise.}
\end{cases}
\]
\[L_1(\lambda) = \begin{cases} [2\lambda, 3\lambda], & \text{Otherwise} \\ [0, \frac{\lambda}{10}], & \text{if } \lambda, \delta \in [0,1] \end{cases} \]

and

\[L_2(\lambda) = \begin{cases} [3\lambda, 4\lambda], & \text{Otherwise} \end{cases} \]

We prove that all conditions of our Corollary 9 and 10 with main Theorem 8 are satisfied. If \(\lambda, \delta \in [0,1] \). The main theorem for expanding type contractive condition becomes easy to understand under \(\lambda = 0 = \delta \).

Assume, with sacrificing generalization, that every instance of \(\lambda, \delta \geq 0 \) and \(\lambda < \delta \). Then

\[d(\lambda, \delta) = |\delta - \lambda|e^{i\theta}, \ d(\lambda, L_1\lambda) = |\lambda - \frac{\lambda}{5}|e^{i\theta}, \ d(\lambda, L_2\delta) = |\delta - \frac{\delta}{10}|e^{i\theta}, \] and

\[d(L_1\lambda, L_2\delta) = \left| \frac{\lambda}{5} - \frac{\delta}{10} \right| e^{i\theta}. \] Clearly for \(\eta = \frac{1}{5} \), we have

\[\left| \frac{\lambda}{5} - \frac{\delta}{10} \right| \geq \frac{1}{5} |\lambda - \delta|. \] Thus \(d(L_1\lambda, L_2\delta) \geq \eta d(\lambda, \delta). \)

Hence, Corollary 10 and the other criteria of Corollary 9 are satisfied, along with inequality 8.1 of Theorem 8.

CONCLUSION

We discuss and explain Theorems 3.11 of the literature Yong-Jie, Piao, (2015) for a contractive mapping of expansive type on CVMS with a common stationary (fixed) point as unique. Some important corollaries are obtained under this contractive condition. And some illustrative examples are given to help us obtain results.

REFERENCES

https://doi.org/10.1155/2013/854965

https://doi.org/10.1515/gmj-2013-0013

