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Abstract 
 

According to the present paper, the two self mappings that satisfy contraction 

type conditions of expansive in complete complex valued metric space reveals 

that these mappings have some common fixed points. Furthermore, the paper 

provides generalizations and extensions of well-known results from the 

existing literature which further expands our understanding of this topic. Some 

illustrative examples are given to help us obtain results.  

Keywords: Expansive Mapping, Stationary (Fixed) Point, Common Stationary 

Point, Complete Complex Valued Metric Space  

 

 

INTRODUCTION  

         A significant result regarding contractions in complete metric spaces was established 

by Banach, S. (1922). Initially, Machuca (1967) developed a model of fixed points in 

expansive mappings, later extended by Jungck (1976) to address numerous other types of 

expansive mappings. Wang et al. (1984) used expanding mappings to demonstrate theorem 

of fixed point under complete metric spaces. As early , Daffer and Kaneko (1992) proved a 
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pair of mappings by defining expanding status as under complete metric spaces at a 

common stationary(or  fixed) point. 

        Recently, Azam et al. (2011) and Rauzkard and Imdad (2012) explored the field of 

complex-valued metric spaces (CVMS). By studying sequence properties and using 

contraction maps to establish theorems for common stationary points, they were able to 

gain fresh insights into fixed points within these spaces. Previous research in this field has 

resulted in a number of broad conclusions, as cited in sources [Ahmad and Kumar, 

P.(2013),  Abbas, M. et al. (2013),  Ahmad, J. et al.(2013), Kutbi, M. A. et al.(2013), Klin-

Cam, C. and C. Suanoom, (2013). Sintunavarat W., and Kumar, P. (2012), Sintunavarat, W., 

Cho, Y. J. and Kumar, P. (2013), Sitthikul, K., and Saejung, S. (2012), Senthil T. Kumar and 

Jahirhuss, R. (2014), Tiwari, S.K., and Sahu, T. (2014), Tiwari, S. K. and Dharmendra Das 

(2017), Sonant, B. and Tiwari, S.K., (2021). Tiwari, S. K. and Sonant, B., (2022)]. 

             Furthermore, the manuscript provides generalizations and extensions of well-

known results from the  existing literature which further expands our understanding of this 

topic. 

 

PRELIMINARY NOTES 

        As a starting point, let's discuss the features of cone-metric spaces, including their 

definition. 

 Presume that, 𝜉1, 𝜉2be a any two complex numbers with their the set ℂ   and  ≤ be 

ordered partially  under  ℂ, then consider as below:     

                𝜉1 ≼ 𝜉2 if an only if   ℝ(𝜉1) ≤ ℝ(𝜉2) and 𝐼𝑚(𝜉1) ≤ 𝐼𝑚(𝜉2)              

As a result, we are able to deduce   𝜉1 ≼ 𝜉2 whenever anyone circumstances are 

accomplished   

                   (i)  𝑅𝑒(𝜉1) = 𝑅𝑒(𝜉2), 𝐼𝑚(𝜉1) < 𝐼𝑚(𝜉2);               

                   (ii) 𝑅𝑒(𝜉1) < 𝑅𝑒(𝜉2), 𝐼𝑚(𝜉1) = 𝐼𝑚(𝜉2);               

                   (iii) 𝑅𝑒(𝜉1) < 𝑅𝑒(𝜉2), 𝐼𝑚(𝜉1) < 𝐼𝑚(𝜉2);               

                   (iv) 𝑅𝑒(𝜉1) = 𝑅𝑒(𝜉2), 𝐼𝑚(𝜉1) = 𝐼𝑚(𝜉2);               

When 𝜉1 ≼   𝜉2 and 𝜉1 ≠ 𝜉2, then condition of  (i), (ii) and (iii) are gratified , and if (iii) is 

only rewarding , then correspond to  𝜉1 ≺ 𝜉2. Take note of the fact that,        

             (a) If  0 ≾ 𝜉1 ⋨ 𝜉2, then |𝜉1| < |𝜉2|, 
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             (b)  if  𝜉1 ≾ 𝜉2 and  𝜉2 ≺ 𝜉3, 𝑡ℎ𝑒𝑛𝜉1 ≺ 𝜉3, 

             (c)  𝛼, 𝛽 ∈ ℝ and ,  then 𝛼𝜉 ≾ 𝛽𝜉, ∀ 𝜉 ∈ ℂ.  

Definition 1[3]: Setting a operator as function   𝑑: 𝑌 × 𝑌 → ℂ  such that gratify some 

circumstances as below: 

               (i)    0 ≾ 𝑑(𝑎, 𝑏), ∀  𝑎, 𝑏 ∈ 𝑌, and (𝑎, 𝑏) = 0 ⇔  𝑎 = 𝑏; 

               (ii)   𝑑(𝑎, 𝑏) = 𝑑(𝑏, 𝑎), ∀ 𝑎, 𝑏 ∈ 𝑌; 

              (iii)   𝑑(𝑎, 𝑏) ≾ 𝑑(𝑎, 𝑐) + 𝑑(𝑐, 𝑏). ∀ 𝑎, 𝑏, 𝑐 ∈ 𝑌. 

Then we can say pair (𝑌, 𝑑) is well-known CVMS where 𝑑 be CVM on Y. 

Example 2: Presuming that an operator 𝑑: 𝑌 × 𝑌 → ℂ   on  (𝑌, 𝑑) and 𝑌 = ℂ  specified 

by 

            𝑑(𝜉1, 𝜉2) = 𝑒𝑖𝑡|𝜉1 − 𝜉2|, where 𝜉1 = (𝑎, 𝑏) and 𝜉2 = (𝑐, 𝑑) at [0,
𝜋

2
]. 

As condition   (𝑌, 𝑑) be a CVMS.  

Definition 3 [3]: Assume we have  {𝜆𝑘} been a sequence on (𝑌, 𝑑) and 𝜆 ∈ 𝑌.Thenwe can 

say that  

 (i)   {𝜆𝑘} is convergent to 𝜆, through  𝑐 ∈ ℂ with 0 ≺  𝑐, we have  𝑘 ∈ ℕ such that  

            𝑑(𝜆𝑘 , 𝜆) < 𝑐. ∀  𝜆 > 𝑘,   Presented by 𝜆𝑘 → 𝜆 as 𝑘 → ∞ or lim
𝑘→∞

𝜆𝑘 = 𝜆; 

(ii)  Additionally, {𝜆𝑘} is sequence of Cauchy , through  𝑐 ∈ ℂ and  0 ≺ 𝑐, we have  𝑘 ∈ ℕ    

        such that , 𝑑(𝜆𝑘, 𝜆𝑘+𝑙) < 𝑐, ∀ 𝜆 > 𝑘 and  𝑙 ∈ ℕ;                                 

(iii)  When each  Cauchy sequence converges, in (𝑌, 𝑑), so,  (𝑌, 𝑑)  will be considered 

       Complete CVMS. 

Lemma 4 [3]: Presume that {𝜆𝑘} ∈ 𝑌 is a sequence on(𝑌, 𝑑), then sequence  {𝜆𝑘}  

converges to 𝜆  if that’s the case |𝑑(𝜆𝑘 , 𝜆)|, like 𝑘 → ∞. 

Lemma 5 [23]: Presume that {𝜆𝑘} ∈ Y is a sequence on(𝑌, 𝑑), then sequence {𝜆𝑘} is a 

Cauchy sequence if and only if  |𝑑(𝜆𝑘 , 𝜆𝑘+𝑙)| = 0, where 𝑙 ∈ ℕ.  

Lemma 6 [20] If  {𝜆𝑘} converges to 𝜆 ∈ 𝑌, and {𝛿𝑘} converges to 𝛿 ∈ 𝑌 over (𝑌, 𝑑), 

then 

                 lim
𝑘→∞

𝑑(𝜆𝑘 , 𝛿𝑘) = 𝑑(𝜆, 𝛿); lim
𝑘→∞

|𝑑(𝜆𝑘 , 𝛿𝑘)| = |𝑑(𝜆, 𝛿)|. 

In particular, for any fixed element 𝑢 ∈ 𝑌, the following holds 

                    lim
𝑘→∞

𝑑(𝜆𝑘 , 𝑢) = 𝑑(𝜆, 𝑢); lim
𝑘→∞

|𝑑(𝜆𝑘 , 𝑢)| = |𝑑(𝜆, 𝑢)|. 
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Lemma 7: Assume that  {𝜆𝑘} be a Cauchy sequence on (𝑌, 𝑑). If ∃ 0 ≤ ℎ < 1  through  

for all 𝑘 ∈ 𝑁 

                              𝑑(𝜆𝑘+1, 𝜆𝑘) ≤ ℎ𝑑(𝜆𝑘 , 𝜆𝑘−1). 

 

MAIN RESULTS  

Theorem 8:  Suppose that the two continuous onto mappings 𝐿1 and 𝐿2 : 𝑌 → 𝑌 on 

complete CVMS (𝑌, 𝑑) . Suppose η ≥ −1, β + γ ≥ 0, α + γ ≥ and ½ <  γ ≤  1,  are 

constants, with 𝛼 +  𝛽 + 𝛾 +  𝜂 > 1. For all 𝜆, 𝛿 ∈ 𝑌, the condition holds as follows 

  𝑑(𝐿1𝜆, 𝐿2𝛿) + 𝛼𝑑(𝜆, 𝐿1𝜆) + 𝛽𝑑(𝛿, 𝐿2𝛿) + 𝛾[ 𝑑(𝜆, 𝐿1𝜆) +  𝑑(𝛿, 𝐿2𝛿)]≽ 𝜂 𝑑(𝜆, 𝛿)… 

(8.1) 

Then, it can be determining that 𝐿1 and 𝐿2 are common stationary point in Y as unique . 

Proof: Consider 𝜆0 ∈ 𝑌. We also have two onto function 𝐿1 and 𝐿2, ∃ 𝜆 1, 𝜆2 ∈ 𝑋 such 

that        

                                    𝐿1(𝜆1) = 𝜆0, and  𝐿2(𝜆2) = 𝜆1. 

From here, we can define two sequences{𝜆2𝑘} and {𝜆2𝑘+1} by 

                                  𝜆2𝑘 =  𝐿1𝜆2𝑘+1, some  𝑘 =  0,1,2,3 … 

                                                          and 

                                  𝜆2𝑘+1 = 𝐿2𝜆2𝑘+2, some  𝑘 =  0,1,2,3 … 

Remark that,  𝜆2𝑘 =  𝜆2𝑘+1 for  𝑘 ≥ 1, then it is fixed point of 𝐿1 and 𝐿2. 

Currently put 𝜆 = 𝜆2𝑘+1 and  𝛿 = 𝜆2𝑘+2 ,  in (8.1) we gain           

         (𝜂 − 𝛽 − 𝛾)𝑑(𝜆2𝑘+2, 𝜆2𝑘+1) ≽ 0. 

Hence, 

 |𝑑(𝜆2𝑘+2, 𝜆2𝑘+1)| ≥ 0 ⇒ 𝑑(𝜆2𝑘+2, 𝜆2𝑘+1) = 0. Since 𝛽 + 𝛾 > 𝜂.  So, 𝜆2𝑘+2 = 𝜆2𝑘+1.  

   Thus 𝐿1 𝜆2𝑘+2 =  𝜆2𝑘 = 𝜆2𝑘+1 =   𝐿2𝜆2𝑘+2 = 𝐿2𝜆2𝑘+1.  Implies that 𝜆2𝑘+1 is common 

fixed point of 𝐿1and 𝐿2. 

If there exists 𝑘 such that 𝜆2𝑘+2 = 𝜆2𝑘+1, then we put 𝜆 = 𝜆2𝑘+3, 𝛿 = 𝜆2𝑘+2  in (8.1.) we 

get 

          𝑑( 𝜆2𝑘+2, 𝜆2𝑘+1) + 𝛼𝑑(𝜆2𝑘+3, 𝜆2𝑘+2) +  𝛽𝑑(𝜆2𝑘+2 , 𝜆2𝑘+1) 

                                     +𝛾[(𝜆2𝑘+3 , 𝜆2𝑘+2) + (𝜆2𝑘+2 , 𝜆2𝑘+1)] ≽ 𝜂𝑑(𝜆2𝑘+3, 𝜆2𝑘+2) 

  This implies (𝜂 − 𝛼 − 𝛾)𝑑(𝜆2𝑘+3, 𝜆2𝑘+2) ≽ 0,  hence |𝑑(𝜆2𝑘+3, 𝜆2𝑘+2)| ≥ 0.  

Since 𝛽 + 𝛾 > 𝜂. Therefore,  |𝑑(𝜆2𝑘+3, 𝜆2𝑘+2)| = 0 ⇒ 𝑑(𝜆2𝑘+3, 𝜆2𝑘+2) = 0,  
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  𝑖. 𝑒 𝜆2𝑘+3=𝜆2𝑘+2. Hereby , 𝐿2 𝜆2𝑘+2 =  𝜆2𝑘+1 = 𝜆2𝑘+2 =   𝐿1𝜆2𝑘+3 = 𝐿1𝜆2𝑘+2. 

Implies that, 𝜆2𝑘+2 is common fixed point of 𝐿1and 𝐿2. 

 Hence from now on, we presume that, 𝜆2𝑘 ≠ 𝜆2𝑘+1, ∀𝑘 = 0,1,2, … … .. 

Now taking 𝜆 = 𝜆2𝑘+1,  𝛿 = 𝜆2𝑘+2 in (8.1), we get  

                  𝑑(𝜆2𝑘+1, 𝜆2𝑘) ≽  
η−β−γ

1+α+γ
 𝑑(𝜆2𝑘+1, 𝜆2𝑘+2)…                       

Hence, 

            |𝑑(𝜆2𝑘+1, 𝜆2𝑘+2)| ≤ 
1+α+γ

η−β−γ
  |𝑑( 𝜆2𝑘 , 𝜆2𝑘+1)|                       (8.2) 

Similarly, we can obtain that 

             |𝑑(𝜆2𝑘+3, 𝜆2𝑘+2)| ≤ 
1+β+γ

η−β−γ
  |𝑑( 𝜆2𝑘+2, 𝜆2𝑘+1)|                  (8.3)                

Now let  ℎ = 𝑚𝑎𝑥 {
1+β+γ

η−α−γ
 ,

1+α+γ

η−β−γ
}. Then 0 < ℎ < 1, and from (8.2) and (8.3) 

                 |𝑑(𝜆2𝑘+2, 𝜆2𝑘+1)|  ≤ ℎ  |𝑑( 𝜆2𝑘+1, 𝜆2𝑘)|                          (8.4)      

Hence, by Lemma 7, {𝜆2𝑘} corresponds to the Cauchy sequence over (𝑌, 𝑑) as well as also 

complete ∃ 𝜆∗ ∈ 𝑌 such that  

 𝜆 2𝑘 →  𝜆∗  , as 𝑘 →  ∞, given 𝐿2 is continuous and onto mapping there exists a point 𝜆∗∗ 

in 𝑋 by through  

                    𝜆∗∗ ∈ 𝐿2
−1 (𝜆∗) 𝑖. 𝑒. 𝜆∗ = 𝐿2(𝜆∗∗), 𝜆2𝑘+1 → 𝐿2𝜆∗∗

 and 𝜆2𝑘 → 𝐿2𝜆∗∗.  

Taking 𝜆 = 𝜆2𝑘+1 and 𝛿 = 𝜆∗∗ in (8.1.) we get 

  Now Consider    

𝑑(𝜆2𝑘 , 𝐿2𝜆∗∗) + 𝛼 𝑑(𝜆2𝑘+1, 𝜆2𝑘) + 𝛽𝑑( 𝜆∗∗, 𝐿2𝜆∗∗)+ 𝜂[𝑑(𝜆2𝑘+1, 𝜆2𝑘) + 𝑑( 𝜆∗∗, 𝐿2𝜆∗∗)] 

                           ≽ 𝜂𝑑(𝜆2𝑘+1, 𝜆∗∗) 

Hence |𝑑(𝜆2𝑘 , 𝐿2𝜆∗∗)| + 𝛼 |𝑑(𝜆2𝑘+1, 𝜆2𝑘)| + 𝛽|𝑑( 𝜆∗∗, 𝐿2𝜆∗∗)| 

                                    + 𝜂[|𝑑(𝜆2𝑘+1, 𝜆2𝑘) + 𝑑( 𝜆∗∗, 𝐿2𝜆∗∗)|] 

                                     ≽ 𝜂|𝑑(𝜆2𝑘+1, 𝜆∗∗)| 

Let 𝑘 → ∞, then by Lemma 6, the above inequality becomes 

                 (𝛽 + 𝛾 − 𝜂)|𝑑(𝐿2𝜆∗∗, 𝜆∗)| ≥ 0 .Since 𝜂 ≤ 𝛽 + 𝛾. so, |𝑑(𝐿2𝜆∗∗, 𝜆∗)| = 0. 

 ⇒ 𝑑(𝐿2𝜆∗∗, 𝜆∗) = 0 ⇒ 𝐿2𝜆∗∗ = 𝜆∗. In similar manner, we can prove that 𝐿1𝜆∗∗ = 𝜆∗. 

 As results, 𝐿1 𝜆
∗∗   = 𝜆∗=𝐿2 𝜆

∗∗ . Thus both 𝐿1 and 𝐿2 have 𝜆∗ as their common stationary 

points.  
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Now to demonstrate uniqueness, assume that,  𝑣 = 𝐿1𝑣 = 𝐿2𝑣 holds, where 𝑣 be 

additional common fixed point of 𝐿1 & 𝐿2. Now Taking 𝜆 = 𝜆∗∗ and 𝛿 = 𝑣 in (8.1), we 

get  

1−(𝜂 + 𝛼 + 𝛽)𝑑(𝜆∗∗, 𝑣) ≽ 0.  

Therefore, 1−(𝜂 + 𝛼 + 𝛽)|𝑑(𝜆∗∗, 𝑣)| ≥ 0. Because(𝜂 + 𝛼 + 𝛽) < 1. So, |𝑑(𝜆∗∗, 𝑣)| = 0. 

 ⇒  𝑑(𝜆∗∗, 𝑣) = 0 ⇒ 𝜆∗∗ = 𝑣. Thus both 𝐿1 and 𝐿2 have 𝜆∗ as their common stationary 

points with unique. Complete proof of this theorem. 

The following Corollary obtain, If 𝛼 = 𝛽 = 0  and 𝛾 = 𝛼 and 𝜂 = 𝛽 in Theorem 8. 

Corollary 9: Suppose that the two continuous onto mappings 𝐿1 and 𝐿2 : 𝑋 → 𝑋 on  

(𝑌, 𝑑). Suppose α ≥ 0, is constants, and  𝛼 +  𝛽 > 1. For all 𝜆, 𝛿 ∈ 𝑌, the condition 

holds as follows 

                      𝑑(𝐿1𝜆, 𝐿2𝛿) + 𝛼[ 𝑑(𝜆, 𝐿1𝜆) +  𝑑(𝛿, 𝐿2𝛿)]≽ 𝛽 𝑑(𝜆, 𝛿)… (9.1) 

Then, It has been determined that there exists a unique stationary point in Y that is 

common to 𝐿1 and  𝐿2 . 

The following Corollary obtain, if 𝛼 = 0 in corollary 9. 

Corollary 10: Suppose that the two continuous onto mappings 𝐿1 and 𝐿2 : 𝑌 → 𝑌 on  

(𝑌, 𝑑) Suppose η ≥ −1. For all 𝜆, 𝛿 ∈ 𝑌, the condition holds as follows 

                                  𝑑(𝐿1𝜆, 𝐿2𝛿) ≽ 𝜂 𝑑(𝜆, 𝛿)…                                       (10.1) 

Then, It has been determined that there exists a unique stationary point in Y that is 

common to 𝐿1 and  𝐿2 . 

To clarify the result mentioned earlier, we provide an instance. 

Example 11: Suppose 𝑌 = [0, ∞) with function  𝑑: 𝑌 × 𝑌 → ℂ  define by  

                                         𝑑(𝜆, 𝛿) = |𝜆 − 𝛿|𝑒𝑖𝜃, 𝜃 = 𝑡𝑎𝑛−1 |
𝛿

𝜆
|. 

Then (𝑌, 𝑑) represent to be metric space with complex valued. Now considering  

 

                                                 1, if 𝜆, 𝛿 ∈ [0,1] 

                           𝜂(𝜆, 𝛿) =   

                                                  
𝟑

𝟐
 ,      Otherwise. 

Now, describe a function  𝐿1, 𝐿2: 𝑌 → 𝐶𝐵(𝑌) by  

                                                   [0,
𝜆

5
 ], if  𝜆, 𝛿 ∈ [0,1]                                                              
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                          𝐿1(𝜆) = 

                                                  [2𝜆, 3𝜆],  Otherwise 

                                                            and 

                                                   [0,
𝜆

10
 ], if  𝜆, 𝛿 ∈ [0,1]                                                                                      

                          𝐿2(𝜆) = 

                                                   [3𝜆, 4𝜆],  Otherwise   . 

We prove that all condition of our Corollary 9 and 10 with main Theorem 8 are satisfied. 

If 𝜆, 𝛿 ∈ [0,1]. The main theorem for expanding type contractive condition becomes easy 

to understand under 𝜆 = 0 = 𝛿.  

Assume, with sacrificing generalization, that every instance of 𝜆, 𝛿 ≥ 0 and 𝜆 < 𝛿.Then  

         𝑑(𝜆, 𝛿) = |𝛿 − 𝜆|𝑒𝑖𝜃,  𝑑(𝜆, 𝐿1𝜆) = |𝜆 −
𝜆

5
| 𝑒𝑖𝜃, 𝑑(𝛿, 𝐿2𝛿) = |𝛿 −

𝛿

10
| 𝑒𝑖𝜃, and  

           𝑑(𝐿1𝜆, 𝐿2𝛿) = |
𝜆

5
−

𝛿

10
|  𝑒𝑖𝜃. Clearly for 𝜂 =

1

5
, we have  

                     |
𝜆

5
−

𝛿

10
| ≥

1

5
 |𝜆 − 𝛿|.Thus 𝑑(𝐿1𝜆, 𝐿2𝛿) ≥ 𝜂𝑑(𝜆, 𝛿). 

Hence, Corollary 10 and the other criteria of Corollary 9 are satisfied, along with inequality 

8.1 of Theorem 8. 

 

CONCLUSION 

We discuses and explain Theorems 3.11 of the literature Yong- Jie, Piao, (2015) for a 

contractive mapping of expansive type on CVMS with a common stationary (fixed) point 

as unique. Some important corollaries are obtained under this contractive condition. And 

some illustrative examples are given to help us obtain results. 
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