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Abstract 
 

The new five-parameter alpha power generalized odd generalized 

exponentiated Weibull distribution is introduced, and some of its structural 

properties are derived. Its parameters are estimated by maximum likelihood, 

and a simulation study examines the accuracy of the estimates. A regression 

model is constructed based on the logarithm of the proposed distribution to 

investigate the survival times of breast cancer patients in Bauchi State, Nigeria. 

The applicability and flexibility of the novel model is proven by means of 

cancer dataset.  

Keywords: Alpha-power transformation; Breast cancer; Censored data; 

Maximum likelihood; Regression model  

 

 

INTRODUCTION 

Cancer is an ailment triggered by the unrestrained separation of abnormal cells in a 

portion of the human body most times. It starts when cells in a portion of the body start to 

grow wildly due to genetic vicissitudes that weaken their usual evolution. The cancer mostly 
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diagnosed among all women is breast cancer. Breast cancer represent one-quarter of all 

cancerous issues detected in women worldwide and the foremost cause of cancer demises 

among women universally. Breast cancer is an assembly of ailments in which cells in breast 

tissue transform and split uncontrolled, typically resulting in a lump or mass. Most breast 

cancers begin in the lobules (milk glands) or in the ducts that connect the lobules to the 

nipple (ACS, 2019). Breast cancer cases are often characterized by late diagnostics, 

considered as the primary cause of cancer related deaths among women in Nigeria (Nnaka 

et al., 2022). Nabegu et al. (2023) assessed the length of life of breast cancer patients and 

the prognostic factors associated with the patients’ survival using medical records and 

pathological variables of women with breast cancer from Aminu Kano Teaching hospital 

(AKTH), Nigeria. Nnaka et al. (2022) studied the five years retrospective review of age 

distribution and histo-epidemiological profile of breast cancer cases in Bauchi state, 

Nigeria. However, these studies only informed on the prevalence rate of breast cancer 

based on associated factors used.  

Furthermore, the quality of any statistical analysis carried out to model a dataset 

depends on the statistical distribution selected. Given that various datasets are 

characterized by different features, the familiar classical distributions are not always 

adequate to describe the definite behaviour of these datasets. Hence, several transformed, 

augmented, composite, and mixed distributions have been developed and applied in these 

datasets from various fields. However, there are still many vital issues that cannot be 

explained by the existing distributions, so we need more flexible and consistent distribution 

for these issues. One of the most significant and current issues that has piqued our 

attention is breast cancer cases among women. Several researchers had carried out research 

on breast cancer, such as Adamu et al. (2019), Feleke et al. (2022), Misganaw et al. (2023). 

The limitation of these studies is that they were only carried out from the survival analysis 

point of view.  

Hence, this research is set out to investigate the survival time of breast cancer 

patients using a novel log-alpha power generalized odd generalized exponentiated Weibull 

(log-APGOGEW) regression model. This can be achieved by developing a regression 

model with log-APGOGEW error distribution. The novel log-APGOGEW regression 

model will use socio-demographic variables and clinical factors such as age, clinical stage 

and body mass index (BMI) as covariates in investigating the survival times (time to death) 

of breast cancer patients.  
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METHODS  

Model Genesis 

The cumulative distribution function (CDF) of the Weibull distribution (Weibull, 

1951) is defined as 
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The CDF and PDF of the APGOGE-G class developed by Abdulkadir et al. (2024) are 

specified as 
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where  is the parameter vector of ( ).G  

By inserting Equations (1) and (2) into Equations (3) and (4) for 0 1,   , the 

CDF and PDF of the random variable ( ), , , ,    X APGOGEW is specified as 
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The PDF plots of X in Figure 1 depict some interesting shapes such as symmetric, 

increasing, decreasing, right-skewed. Likewise, the HRF plots of X in Figure 2 depicts 

increasing, decreasing and bathtub shapes. 

 

Figure 1: PDF plots of ( ), , , ,    X APGOGEW . 
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Figure 2: HRF plots of ( ), , , ,    X APGOGEW . 

Structural Properties 

The quantile function of X derived by inverting Equation (5) is specified as 
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Hence, pseudo-random numbers can be generated from the APGOGEW distribution 

using Equation (8). 

 The rth raw-moment (RM) of X is specified as ( ) ( )
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The integral form in Equation (9) can be solved numerically utilizing R-programme. 

However, an analytical form for the RM can be derived by applying the power series 
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Therefore, the rth RM of the APGOGEW distribution is specified as 
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where ( )   is the gamma function and  
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Table 1. Numerical moments of the APGOGEW. 

r  COM1 COM2 COM3 

1  0.05796 0.00912 0.00099 

2  0.02942 0.00573 0.00070 

3  0.01850 0.00405 0.00053 

4  0.01307 0.00308 0.00042 

r  COM4 COM5 COM6 

1  0.25510 0.03422 0.00173 

2  0.17820 0.02852 0.00155 

3  0.13620 0.02442 0.00141 

4  0.10990 0.02134 0.00128 

 

Table 1 reports the four RM of X from Equation (9) for selected values of the 

APGOGEW parameters combinations (Com): 0 5 0 5 0 5 1 5 1 5Com1: . , . , . , . , .    = = = = = ,

0 5 0 5 0 5 2 5 2 5Com2: . , . , . , . , .    = = = = = , 0 5 0 5 0 5 3 5 3 5Com3: . , . , . , . , .    = = = = = , 

1 5 1 5 1 5 0 5 0 5Com4: . , . , . , . , .    = = = = = , 2 5 2 5 2 5 0 5 0 5Com5: . , . , . , . , .    = = = = = , 

3 5 3 5 3 5 0 5 0 5Com6: . , . , . , . , .    = = = = = . 

 The variance, skewness and kurtosis values of X are without difficulty obtained 

from the four RM. The 3D plots depicted in Figure 3, shows that the skewness and 

kurtosis can be decreasing as the values of ,   increases with fixed 0 5.  = = = .  



Ahmed Abdulkadir, Obinna Damian Adubisi, R. M. Madaki 

 Mikailalsys Journal of Mathematics and Statistics 142 

 

Figure 3: 3D plots of mean, variance, skewness and kurtosis for the APGOGEW 

More so, the rth incomplete moment (IM) of X, say ( ) ( )
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Hence, the IM for the APGOGEW is specified as 
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where  
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where ( )   is the lower incomplete gamma function. 

 The first IM ( )1 t is utilized in the computation of important statistical measures 

such as the mean deviation about the mean and median of X. These are specified as 

( ) ( )1 1 1 1 12 2F     = −  and ( )2 1 12 M = − , respectively. where 
1  is the mean derived 

by setting 1r =  in Equation (13) and M is obtained by setting 0 5u .=  in Equation (8). 

 

Estimation 
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 

 (17) 

The maximum likelihood estimate (MLE) ̂  of  is  determined by maximizing Equation 

(17) numerically using R-programme (optim function). 
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Regression 

Given that X has the PDF specified in Equation (6) and =Y log X , then setting 

e=   and   −= 1 . The log-APGOGEW (LAPGOGEW) density of Y ( )for y can 

be specified as 

( )

( )

( )

y
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y y
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e e
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 (18) 

 

where , , ,     0  and  . Thus, if ( ), , , ,X APGOGEW      , then 

( ) ( )Y log X LAPGOGEW , , , ,    = . The survival function corresponding to 

Equation (18) is specified as 

( )
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= −
−

 



Ahmed Abdulkadir, Obinna Damian Adubisi, R. M. Madaki 

Volume 2, Issue 3, October 2024 145 

The density functions ( ) ( )Z Y  for z = −   is specified as    

( )
( ) ( )

( ) ( )
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(19) 

The standard LAPGOGEW density is Equation (19). 

A regression model is constructed based on the LAPGOGEW for the response 

variable 
iy  with explanatory vector ( )T

i i1 i 2 is, , ,=     and parametric vector 

( )
T

1 2 s, , ,=     as 

T

i i iy z ,   i 1, n,= + =        (20) 

where T

i i=    and iz  is the random error with density specified in Equation (19). 

 The density and survival functions of iY  are specified as 
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and 
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where ( )T

i i iz y .= −    The group of breast cancer patients for which 
iy  is the log-

lifetime or the non-informative log-censoring are represented by F and C with h  and n h−  

observations, respectively. Hence, the log-likelihood for ( )
TT, , , , =       is specified 

as 
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 (21) 

Maximizing Equation (21) numerically using R-programme (optim function), we obtain the 

MLE ̂ . 
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RESULTS AND DISCUSSIONS 

Simulation 

Here, Monte Carlo simulations (MCS) with 1000 replications to inspect the 

estimation accuracy of the ( )APGOGEW , , , ,     distribution with sample-sizes (n) = 

50, 100, 150, 300, and 500 is executed. The samples are generated from Equation (8) and 

the true parameters (Pa.) utilized for initializing the MCS are: 

1 1 1 5 0 3 1 6 1 3= = = = =. , . , . , . , .     . The MCS were executed using the R-programme. 

The average estimates (AEs), Bias, mean square errors (MSEs) and average interval 

length (AILs) of the 95% confidence intervals (CIs) are reported in Table 2. The AEs tend 

to the true parameters and the MSEs decrease to small values when n increases, thus 

showing that the estimates are consistent.  

Table 2. MCS findings for the APGOGEW. 

n Pa. AE Bias MSE Lower 
(95%) 

Upper 
(95%) 

AIL 

50   0.141 -0.959 0.920 0.135 0.148 0.014 

   1.746 0.246 0.920 1.720 1.773 0.053 

   0.151 -0.149 0.070 0.139 0.163 0.024 

   1.807 0.207 0.024 1.769 1.845 0.076 

   1.498 0.198 0.062 1.448 1.548 0.100 

100   0.140 -0.960 0.922 0.136 0.144 0.009 

   1.746 0.246 0.068 1.730 1.763 0.033 

   0.147 -0.153 0.024 0.141 0.152 0.012 

   1.780 0.180 0.046 1.758 1.803 0.045 

   1.469 0.169 0.060 1.434 1.504 0.070 

200   0.141 -0.959 0.920 0.138 0.144 0.005 

   1.749 0.249 0.067 1.739 1.759 0.020 

   0.149 -0.151 0.023 0.145 0.153 0.007 

   1.752 0.152 0.031 1.739 1.764 0.024 

   1.451 0.151 0.048 1.429 1.473 0.044 

300   0.140 -0.960 0.922 0.138 0.142 0.004 

   1.755 0.255 0.069 1.747 1.762 0.015 

   0.150 -0.150 0.023 0.147 0.153 0.005 

   1.738 0.138 0.025 1.730 1.747 0.017 
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   1.451 0.151 0.043 1.435 1.467 0.032 

500   0.139 -0.961 0.924 0.138 0.141 0.003 

   1.763 0.263 0.073 1.758 1.769 0.011 

   0.151 -0.149 0.023 0.149 0.153 0.004 

   1.724 0.124 0.019 1.719 1.730 0.011 

   1.450 0.150 0.035 1.440 1.460 0.020 

 

The MCS values in Table 2 specify that the AEs converges to the true parameters 

of the APGOGEW distribution. The biases and MSEs tend to zero when n increases, 

which shows the consistency of the APGOGEW estimators. However, some of the 

parameter estimates are less accurate. Generally, the MCS findings suggest that larger 

sample sizes and the appropriate choice of selected parameter values are crucial for 

accurate parameter estimation of the APGOGEW distribution. 

 

Applications 

The fitness of the proposed models is demonstrated by means of two real-datasets 

applications using the R-programme (R Core, 2022). The selection of the model is based 

on the Akaike information criterion (AIC), Consistent Akaike information criterion 

(CAIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion 

(HQIC), Kolmogorov-Smirnov (KS) (its p-value), Cramer-von Mises (CVM) and 

Anderson-Darling (ADG) statistics. The model with stronger evidence of a good fit comes 

with least statistics value. Additionally, the graphical plots of the data histograms, estimated 

density and cumulative functions, and the empirical cumulative function are also vital in 

identifying the best fitting model. 

Bladder Cancer Data  

The first dataset comprises the remission times (in months) of 36 bladder cancer 

patients (Klakattawi, 2022). The observations are: 0.315,0.496, 0.616, 1.145, 1.208, 1.263, 

1.414, 2.025, 2.036, 2.162, 2.211, 2.370, 2.532, 2.693, 2.805, 2.910, 2.912, 3.192, 3.263, 

3.348, 3.348, 3.427, 3.499, 3.534, 3.767, 3.751, 3.858, 3.986, 4.049, 4.244, 4.323, 4.381, 

4.392, 4.397, 4.647, 4.753, 4.929, 4.973, 5.074, 5.381. Some descriptive graphs for the data 

are depicted in Figure 4 and it is construed that this data is naturally leptokurtic and left-

skewed. 
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Figure 4. Box plot, TTT, kernel-density, strip, and Violin plots of the data. 

The APGOGEW is compared with the alpha power Weibull (APW), generalized 

odd generalized exponentiated Weibull (GOGEW), exponentiated Weibull (EW), alpha 

power generalized exponentiated Weibull (APGEW) and Weibull (W) distributions. The 

EW and W distributions are familiar distributions. Table 3 reports the MLEs and standard 

errors (SEs) of the fitted models for the dataset. The empirical findings reveal that all 

models produce reliable estimates (with the exception of APGEW). 

Table 3. Empirical results from fitted models to the cancer dataset 

Model MLE (SEs) 

( )APGOGEW , , , ,      22.416 

(0.0147) 

0.139 

(0.036) 

1.894 

(0.015) 

1.575 

(0.015) 

14.499 

(11.400) 

( )APW , ,    1.887 

(0.203) 

1.544 

(0.183) 

190.448 

(124.575) 

  

( )GOGEW , , ,     17.569 

(0.274) 

0.267 

(0.049) 

1.967 

(0.140) 

1.465 

(0.118) 

 

( )EW , ,    1.820 

(0.202) 

1.651 

(0.216) 

6.010 

(1.546) 

  

( )APGEW , , , ,      0.437 

(0.150) 

0.133 

(0.056) 

4.455 

(0.157) 

10.161 

(0.225) 

2.303 

(3.271) 

( )W ,   3.141 

(0.533) 

0.869 

(0.137) 

   

 

Based on the findings presented in Table 4, which specifically contains models with 

correct estimates, it can be observed that the APGOGEW model exhibits the lowest values 
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for the adequacy measures, specifically the KS, CVM, and ADG. This suggests that the 

APGOGEW model offers the most accurate match to the cancer data compared to the 

other models that were examined. The GOGEW model is ranked second based on these 

measures. Conversely, the EW and W models have the greatest values for CVM and ADG, 

as well as other metrics, signifying a relatively inadequate fit to the data. 

Figure 5 indicates that the APGOGEW model's PDF and CDF are more similar to 

the histogram and empirical CDF of the data. Based on these findings, the APGOGEW 

model is recommended as the best fitting model.  

Table 4. Adequacy measures for the models. 

Model CVM ADG AIC BIC CAIC HQIC KS p-value 

APGOGEW 0.062 0.416 130.7 139.1 132.4 133.7 0.14 0.40 

APW 0.208 1.294 139.4 144.5 140.1 141.3 0.25 0.01 

GOGEW 0.152 0.960 140.8 147.6 142.0 143.3 0.22 0.04 

EW 0.315 1.894 144.4 149.5 145.1 146.2 0.29 0.003 

W 0.247 1.518 174.7 178.1 175.0 175.9 0.25 0.01 

 

Table 5 presents the likelihood ratio (LR) tests for the GOGEW, APW, and EW 

models, which are all special cases of the APGOGEW model. In all three situations, the 

null  

hypotheses are rejected with low p-values, showing that the APGOGEW model fits the 

data much better than the other three models. This shows that the APGOGEW model is a 

better fit for this dataset.  

Table 5. LR tests results for the cancer dataset 

Model Hypotheses LR p-values 

APGOGEW vs GOGEW 
0 1 01 =  :  vs :  is false  12.17 0.0001 

APGOGEW vs APW 
0 1 01 = =  :  vs :  is false   13.00 0.0001 

APGOGEW vs EW 
0 1 01 = =  :  vs :  is false   18.00 <0.0001 

 

The plots of the profile log-likelihood function versus some parameter values (with 

fixed MLEs of other parameters) for the first data are displayed in Figures 6. We can see 

the approximate intervals for each parameter that maximize the profile log-likelihood 
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function. However, there are evidence of a monotone log-likelihood in Figures 6(a) and 

6(e) given that the functions do not have the maximum in the range taken for   and  . 

 

Figure 5. Estimated PDFs and APGOGEW CDF, P-P and Q-Q plots for Cancer 

data. 

Regression for Breast Cancer Data 

The data comprises the lifetime (in months) of 54 individuals diagnosed with Breast 

cancer via DBT screening in ATBU teaching hospital (ATBUTH)-Bauchi, Nigeria. The 

data were collected from the cancer record unit of the ATBUTH and will be made available 

upon request. The response variable ty  denote the survival time of the breast cancer 

patients at the facility. 

Under right censoring (0 = censored, 1 = observed lifetime): the observations 

( )i 1 54= , ,  percentage of censoring is around 58.52%. The explanatory variables 

considered i1 : age (in years), i 2 : clinical-stage (I, II, III and IV), and i 3 : BMI (kg/m2). 

The proposed regression model is 

i 0 1 i1 2 i 2 3 i3 iy z i 1 54= + + + + =,    , , ,        
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where 
iz  follows the density in Equation (19). Table 6 reports the MLEs with SEs in 

parentheses, and p-values in brackets for the regression models. The LAPGOGEW 

regression results are compared to the log-GOGEW (LGOGEW), log-APW (LAPW) and 

log-EW (LEW) regressions. The estimates reported in Table 6 indicates that the 

explanatory variables; age, clinical stage and BMI are significant at 0 05= .  level of 

significance. The negative signs of 
2  and 3  means that the higher the clinical stage and 

BMI, shorter the time to failure. 

 

Figure 6. Profile log-likelihood functions for first data (a–e). 

 

Table 6. The MLEs, SEs and p-values for the regression models. 

Model         0  
1  2  3  

LAPGOGE
W 

15.58
5 

(2.573
) 

 

0.944 

(0.197
) 

 

0.055 

(0.020
) 

 

0.282 

(0.024
) 

 

20.12
9 

(0.207
) 

 

0.045 

(0.018) 

[0.0172] 

-3.024 

(0.189) 

[<0.0001
] 

-0.220 

(0.017) 

[<0.0001
] 

LGOGEW - 0.909 

(0.473
) 

0.181 

(0.078
) 

0.053 

(0.063
) 

6.664 

(0.755
) 

 

-0.010 

(0.002) 

[<0.0001
] 

-0.332 

(0.133) 

[0.016] 

-0.040 

(0.029) 

[0.171] 
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LAPW 6.291 

(5.846
) 

- - 0.327 

(0.130
) 

4.466 

(0.769
) 

 

-0.007 

(0.010) 

[0.492] 

-0.367 

(0.081) 

[<0.0001
] 

0.024 

(0.040) 

[0.546] 

LEW - - 4.243 

(2.908
) 

0.553 

(0.297
) 

4.470 

(1.015
) 

 

-0.015 

(0.010) 

[0.147] 

-0.391 

(0.082) 

[<0.0001
] 

0.030 

(0.046) 

[0.514] 

 

More so, the LAPGOGEW regression has the least criterion values as reported in Table 7. 

For the residual analysis of fitted LAPGOGEW regression, the quantile residuals (qrs) 

introduced by Dunn and Smyth (1996) is adopted. 

ˆ
ˆ

ẑie1 e

ˆ
ẑie1 1 e

1 e

1

i

ˆ 1
qr ,

ˆ 1

 − − −
 
 

 − − −
 
 

 
 
 
 
  
− 

 
 
 
 
  

−

 
 
 
 
 
 

− 
=   −

 
 
 
 
 
 
 









 

where ( )T

i i i
ˆ ˆẑ y= −    and ( )

1−
   is the standard normal quantile function. As 

observed in Figure 7(a), no observation is outside the range [-1.5,1.5], this indicates that the 

qrs are distributed randomly and the normal probability plot depicted in Figure 7(b) 

indicates that the qrs follows the standard normal distribution approximately. Hence, the 

evidence supports the LAPGOGEW regression assumptions. 
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Figure 7. (a) Index plot and (b) Normal probability plot for the breast cancer data. 

 

Table 7. Criteria for the fitted regression models. 

Model AIC AICc BIC HQIC 

LAPGOGEW -47.10 -41.98 -31.19 -40.96 

LGOGEW 57.05 61.14 70.97 62.42 

LAPW 53.49 56.69 65.42 58.09 

LEW 50.73 53.93 62.67 55.34 

 

CONCLUSION 

We presented a new five-parameter alpha power generalized odd generalized exponentiated 

Weibull (APGOGEW) model, which comprise special cases like the generalized odd 

generalized exponentiated Weibull, alpha power Weibull, exponentiated Weibull and 

Weibull distributions. Some of its structural properties were derived. The simulation study 

and empirical result from the real-data application disclosed the consistency of the 

maximum likelihood estimators and fitness of the APGOGEW model. More so, the log-

APGOGEW regression model is constructed for censored data and its applicability to 

breast cancer data is demonstrated. The proposed model offered the best fit when 

compared to other well-known models.  
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