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Abstract 
 

Making the right medical decision is challenging work because, in our daily life, 

decision-making problems may have the components of membership and non-

membership degrees with the possibility of hesitation. Since soft theory offers 

a theoretical framework for dealing with ambiguous, fuzzy, and ill-defined 

objects, it is a key development in the field of computer programming as well 

as other scientific disciplines. Intuitionistic fuzzy soft sets provide an effective 

tool for solving multiple attribute decision-making with intuitionistic fuzzy 

information. The most essential issue is how to derive the ranking of 

alternatives from the information quantified in terms of intuitional fuzzy 

values. This theory also has the potential to be used to solve such real-world 

problems. In this work, we explore how Sanchez's medical theory could be 

used in medical diagnosis and provide a fuzzy arithmetic-based algorithm for 

identifying medical conditions to address this. 

Keywords: Fuzzy Logic, Inference System, Insurance, Index of Vagueness, 

Claim Validation 
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Introduction 

In our daily life, we have seen various problems in different fields, like engineering, 

medical science, social science, management, economics, and many more. Most of the 

problems are based on uncertainty, partially true, or have no clear boundaries. Classical 

mathematical theories cannot deal with such problems. Fuzzy logic is a suitable and best 

theory for dealing with such problems. The most suitable theory for dealing with such 

problems with uncertainty is the theory of fuzzy sets developed by Zadeh [1] in 1965. Then 

an outstanding contribution and plenty of work have been done in the field of fuzzy set 

and fuzzy logic in the last 50+ years. Several researchers have worked on fuzzy sets and 

fuzzy logic with real-world applications. Kumar et al. [2] have shown its application in the 

system of washing machines and medical science. Further, for the purpose of life insurance 

underwriting, Kumar et al[ 3] have presented a model based on a fuzzy expert system that 

will help insurance companies determine insurer mortality in the presence of diabetes.  

Similarly, Allahverdi, & Ertosun, [ 4] used fuzzy for risk determination of type-2 diabetes 

disease. We may face numerous encounters in our daily lives in selecting the best one for 

an actual outcome. Paudel et al. [5] addressed the difficulties encountered when deciding 

on the best candidate from a group of people in the same environment using the 

maximum-minimum composition.  In our daily life, decision-making problems may have 

the components of membership and non-membership degrees with the possibility of 

hesitation. But fuzzy set theory is considered to have only a membership degree. So, this 

theory could not be considered for solving such problems. In 1996, Atanassov [6] 

introduced the concept of intuitionistic fuzzy sets (IFS), which is capable of capturing 

information that includes membership and non-membership values with some possible 

degree of hesitation. Then intuitionistic fuzzy set has been applied in various fields of 

research in making a decision and medical diagnoses.  Ejegwa and Onasanya [7] showed 

how intuitionistic fuzzy sets could be used to solve real-world decision-making issues, like 

medical diagnostics and bioinformatics. Similarly, in 2020, Ejegwa and Onyeke [8] tested 

the new method's applicability by conducting hypothetical medical diagnoses on a few 

patients and determined their respective diagnoses based on the correlation coefficient 

values between each patient and each disease. To establish a connection between the 

societies and the parameters in our study, Aggarwal et al [9] employ intuitionistic fuzzy sets. 

Similarly, using intuitionistic fuzzy, Adamu [10] suggested a technique for sets in 
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environmental management to determine the type of erosion affecting some towns in order 

to put in place an efficient control measure.   

Molodtsov [11] first introduced the soft set theory in 1999 to handle objects whose 

definitions used a very broad and general set of characteristics. The theory has the potential 

to be used to solve real-world problems in economics, engineering, the environment, social 

science, medicine, and business management. It is very convenient and easily applicable 

because there are no restrictions on the approximate description. The traditional soft set 

theory was fuzzified by Yang et al [12], and the fuzzy membership is used to describe 

parameters-approximate elements of the fuzzy soft set. In the study of decision models and 

their applications for simulating ambiguity and uncertainty, Deli and Çağman, [13] 

presented a method of making decisions that were based on intuitionistic fuzzy 

parameterized-soft set theory. Intuitionistic fuzzy sets and intuitionistic fuzzy soft sets are 

more useful for the application point of view in the field of uncertainty due to vagueness. 

Fuzzy soft set theory is gaining importance for finding a coherent and logical solution to 

various real-life problems. The concepts of fuzzy soft set and intuitionistic fuzzy soft set 

were used by Hooda et al [14]  to study medical diagnosis using Sanchez's methodology. In 

[15, 16, 17, 18], we can see how skillfully the authors illustrate their research work in 

various fields using the concepts of fuzzy soft theory and soft set theory with applications. 

When solving multiple attribute decision-making problems, intuitionistic fuzzy information 

and fuzzy soft sets will become efficient tools. Feng et al [19] proposed a new extension of 

the priority method for enrichment evaluation using an intuitionistic fuzzy soft set and 

presented a new algorithm for solving multi-attribute decision problems. Hu et al [20] 

created a medical diagnosis group decision-making model by determining expert weights 

based on a new similarity measure of intuitionistic fuzzy soft sets and integrating evaluation 

information using the weighted intuitionistic fuzzy soft Bonferroni mean operator. To 

demonstrate the applicability and efficacy of the proposed group medical diagnosis model 

in an intuitive, fuzzy, soft environment, a case study is presented, followed by a 

comparative analysis. Here, we apply Sanchez's [21] idea to medical diagnosis and present a 

case study to illustrate the method. In order to do this, we build an intuitionistic fuzzy soft 

set using fuzzy soft set theory. For this, we present a fuzzy arithmetic-based algorithm for 

diagnosing medical conditions. 
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Definitions and Preliminaries 

Suppose X is a universal set and P(X) be the power set of X. We assume that E is the set 

of parameters and A is a subset of E. Then the collection (F, A) is defined as: 

(𝐹, 𝐴) = {(𝑥, 𝐹𝐴(𝑥)): 𝑥 ∈ 𝐸, 𝐹𝐴(𝑥) ∈ 𝑃(𝑋)} 

where 𝐹𝐴 is a function from E to P(X). 

Here, 𝐹𝐴(𝑥) is known as the 𝑥-approximate function of A.  We note that  𝐹𝐴(𝑥) =

∅ if 𝑥 ∉ 𝐴. 

Fuzzy Set:  Let X be a universal set, then the collection of pairs  

𝐴 = {(𝑥, 𝜇𝐴(𝑥)): 𝜇𝐴(𝑥): 𝑋 → [0,1], 𝑥 ∈ 𝑋} 

 defines a fuzzy set A on X. 

Here, 𝜇𝐴 is called a membership function defined as  

 𝜇𝐴(𝑥) = {

0                                      𝑖𝑓 𝑥 ∉ 𝐴 and there is no ambiguity
1                                      𝑖𝑓   𝑥 ∈ 𝐴 and there is no ambiguity 

(0,1)                     if there is ambiguity whether 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∉ 𝐴.
 

The value of   𝜇𝐴(𝑥) represents the degree of element x belonging to the set A. 

Intuitionistic fuzzy set:  Let X be a non-empty set. An intuitionistic fuzzy set A in X is 

an object having the form         

                                           𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)): 𝑥 ∈ 𝑋}, 

where, 𝜇𝐴: 𝑋 →[0,1] and  𝜈𝐴: X → [0,1] are the membership and non-membership function 

respectively, of the element  𝑥 ∈ 𝑋 to the set A.                                                                                        

Here, 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥) are respectively called the degree of membership and degree of 

non-membership function of the element 𝑥 ∈ 𝑋 to the set A, and for every 𝑥 ∈ 𝑋, we have          

0 ≤ 𝜇𝐴(𝑥) +  𝜈𝐴(𝑥) ≤ 1.                                                                                                                                                     

Furthermore, in the fuzzy set, there is a lack of knowledge of whether 𝑥 ∈ 𝑋 belongs to A 

or not. This lack of knowledge for 𝑥 ∈ 𝑋 to the set A is called hesitation of x in A and is 

denoted by 𝜋𝐴(𝑥) and defined as:   

                   𝜇𝐴(𝑥) +  𝜈𝐴(𝑥) + 𝜋𝐴(𝑥) = 1 ,                                                                                                                                     

where,       𝜋𝐴 ∶ 𝑋 → [0,1] with 0 ≤ π𝐴(𝑥) ≤ 1. 
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Suppose X is a universe of discourse and let A and B be two intuitionistic fuzzy sets in 

X, then we have 

1. A = B  if and only if 𝜇𝐴(𝑥) =  𝜇𝐵(𝑥), 𝜈𝐴(𝑥) = 𝜈𝐵(𝑥) , ∀ 𝑥 ∈ 𝑋. 

2. 𝐴 ⊆ 𝐵 if and only if 𝜇𝐴(𝑥) ≤  𝜇𝐵(𝑥), 𝜈𝐴(𝑥) ≥ 𝜈𝐵(𝑥) , ∀ 𝑥 ∈ 𝑋. 

3. The complement of the intuitionistic fuzzy set A is denoted by 𝐴𝑐  and defined 

by  

A𝑐 = {(𝜈𝐴(𝑥), 𝜇𝐴(𝑥)): 𝑥 ∈ 𝑋}. 

4. The union 𝐴 ∪ 𝐵 is defined as  

𝐴 ∪ 𝐵 = {〈𝑥, max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), min(𝜈𝐴(𝑥), 𝜈𝐵(𝑥))〉: 𝑥 ∈ 𝑋}. 

5. The intersection A ∩ B is defined as  

𝐴 ∩ 𝐵 = {〈𝑥, min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), max(𝜈𝐴(𝑥), 𝜈𝐵(𝑥))〉: 𝑥 ∈ 𝑋}. 

6. 𝐴 + 𝐵 = {〈𝑥, 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥). 𝜇𝐵(𝑥), 𝜈𝐴(𝑥). 𝜈𝐵(𝑥)〉 ∶ 𝑥 ∈ 𝑋}. 

7. 𝐴. 𝐵 = {〈𝑥, 𝜇𝐴(𝑥). 𝜇𝐵(𝑥), 𝜈𝐴(𝑥)+𝜈𝐵(𝑥)−𝜈𝐴(𝑥). 𝜈𝐵(𝑥)〉 ∶ 𝑥 ∈ 𝑋}. 

The cartesian product of A and B is defined by:  

𝐴 × 𝐵 =  {〈〈𝑥, 𝑦〉, 𝜇𝐴(𝑥). 𝜇𝐵(𝑥), 𝜈𝐴(𝑥). 𝜈𝐵(𝑥)〉: 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}. 

 Let  𝑋 and Y be two non-empty sets and R be an intuitionistic fuzzy relation from 𝑋 to 

𝑌. Suppose A be an intuitionistic fuzzy set in 𝑋 then max-min-max composite relation of R 

with A being an intuitionistic fuzzy set, B of 𝑌 denoted by 𝐵 = 𝑅𝑜𝐴 such that its 

membership function and non-membership function are defined as: 

𝜇𝐵(𝑦) = max
𝑥

{min[𝜇𝐴(𝑥), 𝜇𝑅(𝑥, 𝑦)]} and 𝜈𝐵(𝑦) = min
𝑥

{max[𝜈𝐴(𝑥), 𝜈𝑅(𝑥, 𝑦)]}  for all 

𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌.  

Let, 𝑄(𝑋 → 𝑌) and 𝑅(𝑌 → 𝑍) be two intuitionistic fuzzy relations, then the max-

min-max composite relation 𝑅𝑜𝑄 is an intuitionistic fuzzy relation from 𝑋 to 𝑍 such that is 

membership function and non-membership function is defined by: 

𝜇𝑅𝑜𝑄(𝑥, 𝑦) = ⋁
𝑦

{min[𝜇𝑄(𝑥, 𝑦), 𝜇𝑅(𝑦, 𝑧)]}   and    𝜈𝑅𝑜𝑄(𝑥, 𝑦) =

∧
𝑦

{max[𝜈𝑄(𝑥, 𝑦), 𝜈𝑅(𝑦, 𝑧)]}                      for all (𝑥, 𝑧) ∈ 𝑋 × 𝑍 and for all 𝑦 ∈ 𝑌. 

Fuzzy soft set: Let X be the universal set and E is the set of all parameters and 𝐹(𝑋) be 

the set of all fuzzy sets in X. For  𝐴 ⊆ 𝐸, the fuzzy soft set 𝐹𝐴 over 𝐹(𝑋) is defined by:  
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𝐹𝐴 = (𝐹, 𝐴) = {(𝑝, 𝐹𝐴(𝑝)): 𝑝 ∈ 𝐸 and 𝐹𝐴(𝑝) ∈ 𝐹(𝑋)}, where 𝐹𝐴 is a function, 𝐹𝐴: 𝐸 →

𝐹(𝑋). 

If 𝐹(𝑋) is the collection of all intuitionistic fuzzy set over X, then 𝐹𝐴  is an intuitionistic 

fuzzy soft set. The value 𝐹𝐴(𝑥) is an intuitionistic fuzzy set and is called x- element of 𝐹𝐴 

for all 𝑥 ∈ 𝐸 and is defined as: 

𝐹𝐴(𝑥) = { (𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥): 𝑥 ∈ 𝑋) }. 

 

Methodology 

Here we apply Sanche’s idea for the medical diagnosis and presenting a case study 

to illustrate the method. In order to do this, we use intuitionistic fuzzy soft set theory, and 

for that presenting a fuzzy–based algorithm for diagnosing a medical condition. Assume 

that there is a set of m patients P and a set of n symptoms, E that is caused by a set of k 

diseases, D. Consider an intuitionistic fuzzy soft set (𝐹, 𝑃)over E. This intuitionistic fuzzy 

set gives a patient-symptom matrix R. With the help of the intuitionistic fuzzy set (𝐹, 𝐸) 

over D we construct two matrices R1 and R2 named symptom-disease and non-symptom-

disease matrix respectively. The relation matrices M1 and M2 are obtained from RoR1 and 

RoR2 using max-min-max composition. Then we calculate the medical diagnosis table D.Sk, 

where, 

      D.Sk = max
𝑗

{S. D𝑀1
(𝑝𝑖 , 𝑑𝑗) − S. D𝑀2

(𝑝𝑖 , 𝑑𝑗)} with 𝑑𝑗 = 𝜇𝑗 − 𝜈𝑗𝜋𝑗. 

From the diagnosis table D.Sk, we conclude that the patient 𝑝𝑖 is suffering from the disease 

𝑑𝑗 

 

Algorithm 

1. The output matrix R is obtained via input intuitionistic fuzzy soft set  (𝐹, 𝑃). 

2. The output matrices R1 and R2 are obtained through intuitionistic fuzzy sets 

(𝐹, 𝐸) and  (𝐹, 𝐸)𝑐. 

3. Calculate 𝑀1 = 𝑅𝑜𝑅1  and 𝑀2 = 𝑅𝑜𝑅2 using max-min-max rule. 

4. The diagnosis matrices 𝑆. 𝐷𝑀1
 and 𝑆. 𝐷𝑀2

are de-fuzzify of  𝑀1 and 𝑀2 

respectively. 
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5. Calculate, D.Sk = max
𝑗

{S. D𝑀1
(𝑝𝑖 , 𝑑𝑗) − S. D𝑀2

(𝑝𝑖 , 𝑑𝑗)} with 𝑑𝑗 = 𝜇𝑗 − 𝜈𝑗𝜋𝑗. 

6. Conclude that the patient  𝑝𝑖 is suffering from the disease 𝑑𝑗. 

 

Case Study                                                            

  Let us consider a universal set 𝑃 = {𝑝1,  𝑝2, 𝑝3, 𝑝4} of patients in a 

hospital with different        symptoms say body temperature, headache, dizziness, and body 

pain. Consider a set 

 𝑆 = {𝑒1,  𝑒2, 𝑒3, 𝑒4} of parameters where, 𝑒1= body temperature, 𝑒2 = headache, 𝑒3= 

dizziness     𝑒4= body pain. 

Let 𝐷 = {𝑑1,  𝑑2, 𝑑3 } be the set of diseases, where 𝑑1= typhoid, 𝑑2= malaria, 𝑑3= covid. 

Here, the temperature is measured with the help of medical instrument (digital 

thermometer), while headache, dizziness and body pain are the rating scale in the interval, 

which are obtained via the questions to the patients and we prepare the following table: 

Table (1):   Patient -Symptoms Table 

 𝑒1 𝑒2 𝑒3 𝑒4 

𝑝1 103.6 6 6 7 

𝑝2 102.8 7 4 8 

𝑝3 104.4 5 8 8 

𝑝4 102 4 4 6 

 

To fuzzify the above data, we use the membership functions  

      𝜇𝑇 ∶  [98 , 106] ⟶ [0, 1]  and 𝜇 ∶  [0 , 10] ⟶ [0, 1]. 

Here 𝜇𝑇 indicates the membership function defined for the body temperature and the 

second one indicates for other symptoms. We note that, the body temperature 98 means 

there is no fever in body and 106 means extreme level of body temperature and we have 

𝜇𝑇(98) = 0 and 𝜇𝑇(106) = 1. Also 𝜇(0) = 0 and 𝜇(10) = 1 for the rest of others 

symptoms. 

For any 𝑥 ∈ [98, 106], we define the membership function as follow 

𝜇𝑇(𝑥) =  
𝑥−98

106−98
=

𝑥−98

8
 , 
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and for, 𝑥 ∈ [0, 10], the membership function is defined as 𝜇(𝑥) =  
𝑥−0

10−0
=

𝑥

10
. 

Then the corresponding fuzzified data of above table is as: 

Table 2: Patient -Symptoms Table 

 𝑒1 𝑒2 𝑒3 𝑒4 

𝑝1 .7, .1, .2 .6, .2, .2 .6, .1, .3 .7, .2, .1 

𝑝2 .6, .1,.3 .7, .1, .2 .4, .4, .2 .8, 0, .2 

𝑝3 .8, .1, .1 .5, .3, .2 .8, .1, .1 .8, .2, 0 

𝑝4 .5, .2, .1 .4, .3, .3 .4, .5,. 1 .6, .3, .1 

Now, we construct a matrix to show the relation between patients and symptoms:            

                     𝑒1            𝑒2             𝑒3              𝑒4 

𝑅 =  

𝑝1

𝑝2
𝑝3

𝑝4

[

. 7, .1, .2 . 6, .2, .2 . 6, .1, .3 . 7, .2, .1

. 6, .1, .3 . 7, .1, .2 . 4, .4, .2 . 7, .2, .1

. 8, .1, .1
5, .2, .1

. 5, .3, .2

. 4, .3, .3
. 8, .1, .1 . 8, 0, .2
. 4, .5, . 1 . 6, .3, .1

] 

This matrix is known as patient- symptom matrix. Now we consider a table to show the 

relationship between diseases and their corresponding parametric values. 

Table 3: Symptoms- Diseases Table 

 𝑑1 𝑑2 𝑑3 

𝑒1 100.4 103.6 102 

𝑒2 6 3 5 

𝑒3 4 2 4 

𝑒4 4 5 7 

                                                                                                                                    

The corresponding fuzzified table is given below: 

Table 4: Symptoms- Diseases Table 

 𝑑1 𝑑2 𝑑3 

𝑒1 .3, .3, .4 .7, .2, .1 .5, .3, .2 

𝑒2 .6, .3, .1 .3, .4, .3 .5, .2, .3 

𝑒3 .4, .5, .2 .2, .2, .3 .4, .4, .2 

𝑒4 .4, .3, .3 .5, .2, .3 .7, .2, .1 
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Now, we introduce two matrices R1 and R2 named as symptom- disease matrix and non- symptom 

–disease matrix as follow: 

                                                        𝑑1              𝑑2                  𝑑3 

𝑅1 =

𝑒1

𝑒2
𝑒3

𝑒4

[

(. 3, .3, .4) (. 7, .2, .1) (. 5, .3, .2)
(. 6, .3, .1) (. 3, .4, .3) (. 5, .2, .3)
(. 4, .5, .2)
(. 4, .3, .3)

(. 2, .5, .3)
(. 5, .2, .3)

(. 4, .4, .2)
(. 7, .2, .1)

] 

                                                        𝑑1              𝑑2                  𝑑3 

𝑅2 =

𝑒1

𝑒2
𝑒3

𝑒4

[

(. 3, .3, .4) (. 2, .7, .1) (. 3, .5, .2)
(. 3, .6, .1) (. 4, .3, .3) (. 2, .5, .3)
(. 5, .4, .2)
(. 3, .4, .3)

(. 5, .2, .3)
(. 2, .5, .3)

(. 4, .4, .2)
(. 2, .7, .1)

] 

 

To diagnosis the diseases of the patients, we construct two new matrices says 𝑀1 and 𝑀2 

called patient-disease and patient-non disease matrix respectively using the max-min-max method: 

𝜇𝑀1
(𝑝𝑖 , 𝑑𝑗) = ⋁{𝜇𝑅(𝑝𝑖 , 𝑒𝑗)⋀ 𝜇𝑅1

(𝑒𝑗, 𝑑𝑘)}, and  𝜇𝑀1
(𝑝𝑖 , 𝑑𝑗) =

⋀{𝜈𝑅(𝑝𝑖 , 𝑒𝑗)⋁ 𝜈𝑅1
(𝑒𝑗 , 𝑑𝑘)}, 

so, we have:  

                             𝑑1              𝑑2                  𝑑3 

𝑀1 = 𝑅 𝑜 𝑅1  =   

𝑒1

𝑒2
𝑒3

𝑒4

 [

(. 6, .3, .1) (. 7, .2, .1) (. 7, .2, .1)
(. 6, .3, .1) (. 6, .2, .2) (. 7, .2, .1)
(. 5, .3, .2)
(. 4, .3, .3)

(. 7, .2, .1)
(. 5, .2, .3)

(. 7, .2, .1)
(. 6, .3, .1)

] 

Similarly, 

𝑀2 = 𝑅 𝑜 𝑅2   = [

(. 5, .3, .2) (. 5, .2, .3) (. 7, .2, .1)
(. 4, .3, .3) (. 4, .3, .3) (. 7, .2, .1)
(. 5, .3, .2)
(. 4, .3, .3)

(. 5, .2, .3)
(. 4, .3, .3)

(. 7, .2, .1)
(. 6, .3, .1)

] 

 

Now, we calculate the diagnosis score which helps us to conclude that, the patient 𝑝𝑖 is 

suffering from the disease 𝑑𝑘, and for this, we use the formula: 

D.Sk = max
𝑗

{𝑆. 𝐷𝑀1
(𝑝𝑖 , 𝑑𝑗) − 𝑆. 𝐷𝑀2

(𝑝𝑖 , 𝑑𝑗)} with 𝑑𝑗 = 𝜇𝑗 − 𝜈𝑗𝜋𝑗. 
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Here, 𝑑1 =  .6 − .2 × .2 = .56,  𝑑2 =  .7 − .2 × .1 = .68 ,   𝑑3 =  .7 − .2 × .1 = .68. 

 

Similarly, we can calculate the remaining and for 𝑀2 also and we have  

                                  𝑑1      𝑑2      𝑑3                                                  𝑑1      𝑑2      𝑑3 

         𝐷. 𝑆𝑀1
=  

𝑝1

𝑝2
𝑝3

𝑝4

 [

. 57 . 68 . 68

. 57 . 56 . 68

. 44

. 31
. 68
. 44

. 68

. 57

]       and          𝐷. 𝑆𝑀2
=   

𝑝1

𝑝2
𝑝3

𝑝4

 [

. 44 . 44 . 68

. 31 . 31 . 68

. 44

. 31
. 44
. 31

. 68

. 57

]                        

The following diagnosis table is obtained by using the formula 𝐷. 𝑆𝑀1
− 𝐷. 𝑆𝑀2

, shows 

relations of patients and their corresponding disease. 

Table 5: Disease -Diagnosis Table 

 𝑑1 𝑑2 𝑑3 

𝑝1 

𝑝2 

𝑝3 

𝑝4 

.13 

.26 

0 

0 

.24 

.25 

.24 

.13 

0 

0 

0 

0 

 

From this disease-diagnosis table, we can conclude that the patient 𝑝1  is suffering from 

disease 𝑑2 that is from malaria. The patient 𝑝2 is suffering from typhoid. And the patients 

𝑝3 and 𝑝4 are also suffering from malaria. 

 

Conclusion  

Since soft theory offers a theoretical framework for dealing with ambiguous, fuzzy, 

and ill-defined objects, it is a key for solving multiple attribute decision-making with 

intuitionistic fuzzy information. The best medical decision can be challenging to implement 

because, in daily life, membership and non-membership degrees with the potential for 

hesitation can be included in decision-making issues. In this study, we looked into how 

Sanchez's medical theory could be used for diagnosing patients using an intuitionistic fuzzy 

set through a fuzzy arithmetic-based algorithm. 
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