
Kwaghe International 

Journal of Sciences and Technology  

 
Volume 1, Issue 1, July 2024; 586-609 

https://ejournal.yasin-alsys.org/index.php/KIJST  
                     KIJST Journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

ISSN : 0000-0000 
 

Index: Harvard, Boston, Sydney 
University, Dimensions, Lens, 
ResearchGet Scilit, Semantic, 
Google Scholar, Base etc 
 
 
 
 

https://doi.org/10.58578/KIJST.v1i1.3721 

 
A New Inverse Lomax Weibull-G Family of Distributions 

with Applications 

 

 

 
Jamilu Yunusa Falgore1, Yahaya Abubakar2, Sani Ibrahim Doguwa3, 

Aminu Suleiman Mohammed4, Abdussamad Tanko Imam5  

Ahmadu Bello University, Zaria, Nigeria 

jamiluyf@gmail.com; ensiliyu2@yahoo.co.uk 

 

 

 

 

 

Article Info: 

Submitted: Revised: Accepted: Published: 

Jul 1, 2024 Jul 20, 2024 Jul 27, 2024 Jul 31, 2024 

 

 
 

Abstract 
 

The field of statistics is constantly evolving, and new approaches are being 

developed to model real-world datasets. Despite this, there are still many 

significant concerns surrounding real data that remain unresolved by existing 

approaches. One of the drawbacks of the Inverse Lomax distribution is that it 

belongs to the inverted family of distributions, which limits its application and 

makes it unsuitable for some situations. Based on these, a new family of 

distributions called Inverse Lomax Weibull G (ILWG) based on the Inverse 

Lomax-G and Weibull-G was proposed in this study. Some statistical 

properties of the family such as the quantile function, moments, and 

characteristic function were presented. Exponential distribution was used as a 

member of this family to demonstrate the applicability of the new family. Some 

statistical properties of the Inverse Lomax Weibull exponential distribution 

(ILWED) such as quantile function, moments, and characteristic function were 

demonstrated. ILWED's shapes can be right skewed and symmetric, as the 

case maybe. Sample quantiles were presented. A simulation study was also 

presented to explore the desirable properties of the ILWED. Lastly, an 
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application to three (3) different datasets was demonstrated based on the 

ILWED. 

Keywords: Weibull, Inverse Lomax-G family, Exponential Distribution, New 

Weibull Inverse Lomax Distribution, Weibull-G  

 

 

Introduction 

 The field of statistics is constantly evolving, and new approaches are being 

developed to model real-world datasets. Despite this, there are still many significant 

concerns surrounding real data that remain unresolved by existing approaches. It is crucial 

to recognize these limitations and continue to explore new methods and techniques that 

can improve our understanding of the underlying patterns in the data ([1], [2], and [3]). In 

this context, statistical distributions play a crucial role in allowing statisticians and 

practitioners to make predictions and draw conclusions across a wide range of fields of 

study. The Inverse Lomax distribution and Weibull distribution are two commonly used 

distributions that have different interpretations and uses but can be studied jointly in 

specific contexts to yield more comprehensive insights ([4], [5], [6], [7], and [8]). For 

instance, if you have data that shows the time it takes for a specific event to occur and it is 

right-skewed, you should consider using both the Inverse Lomax and Weibull distributions 

to analyze it thoroughly. By examining the parameters of both distributions, you can obtain 

a more comprehensive understanding of the underlying events and make better predictions 

or conclusions about the data ([9], [10], and [11]).  

Some of the families of Inverse Lomax distribution include the Inverse Lomax-G by [12], 

the Inverse Lomax exponentiated-G by [13], the Sine Inverse Lomax G by [14], as well as 

Truncated Inverse Lomax G by [15]. Moreover, some of the Weibull families of 

distributions include the Weibull-G by [16], the New Weibull-G by [17], the Extended 

Weibull-G by [18], the Transmuted Weibull G by [19], the Weighted Weibull-G by [20], as 

well as Harmonic mixture Weibull-G by [21]. The motivation behind this current paper is 

to propose a family of distributions that has both the properties of Inverse Lomax and 

Weibull distributions to model data of such kinds. In this paper, we introduced the Inverse 

lomax Weibull-G (ILWG) which will be used to fit datasets that exhibit both the properties 

of the Inverse Lomax distribution and Weibull distribution. 



Jamilu Yunusa Falgore, Yahaya Abubakar, Sani Ibrahim Doguwa, Aminu Suleiman Mohammed, Abdussamad 
Tanko Imam 

 Kwaghe International Journal of Sciences and Technology 588 

Because of its simplicity and mathematical features, the exponential distribution is a 

common choice for modelling events with constant failure rates. There are only constant 

failure rate scenarios that can use the exponential distribution. Data with increasing or 

decreasing failure rates might not be adequately modelled by it. However, extensions are 

being developed by researchers to solve its limitations [22]. Some of the extensions of the 

exponential distribution include the Exponentiated Exponential distribution by [23], the 

weighted exponential distribution by [24], the transmuted generalized exponential 

distribution by [25], the Weibull exponentiated exponential distribution by [26], the Weibull 

exponentiated exponential by [27], the modified weighted exponential distribution by [28], 

as well as the new weighted exponential distribution by [29]. 

One of the drawbacks of the Inverse Lomax distribution is that it belongs to the inverted 

family of distributions, which limits its application and makes it unsuitable for some 

situations [30]. Though widely used, the Weibull distribution has drawbacks when the 

underlying failure mechanism does not follow a monotonically growing or decreasing 

hazard function, which could result in modelling that is not accurate. Comparably, the 

memoryless quality of the exponential distribution is a downside that might not apply in all 

real-world situations, potentially resulting in modelling errors, particularly when 

occurrences are not independent or when hazard rates fluctuate over time.  

 

The formulation of the Inverse Lomax Weibull-G (ILWG) 

Falgore and Doguwa [12] proposed the Inverse Lomax-G (IL-G) family based on the T-X 

generator by [31] for any baseline G(.) distribution. The cumulative density function (CDF) 

and probability density function (PDF) of IL-G are given as 
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Where Δ is a vector of parameter(s) for the baseline distribution. The CDF of Weibull-G by 
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[16] is considered as 
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− = −Δ , where  is a vector of parameters. Let the 

scale parameter  assumes value 1 then by considering ( ; )G x Δ as the baseline CDF and 

replacing back in equation (1), we have the CDF and PDF of the ILWG as: 
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The Reliability, Hazard Rate, and Cumulative Hazard Functions of the Inverse 

Lomax Weibull-G 

R(t) represents the reliability function, sometimes referred to as the survival function. It is 

the likelihood that the unpredictable event (time of failure) will occur after time t. The R(t) 

of the ILWG can be given as: 
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The hazard function, abbreviated as h(t), is the conditional likelihood that a component 

will fail in a short period, assuming that it has survived from time zero to the start of the 

interval. The hazard function of the ILWG family can be given as: 
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(6) 

The area under the hazard rate function, represented by the symbol H(t), represents the 

cumulative hazard rate. Calculating average failure rates is an essential application of this 

tool. The H(t) of the ILWG is given by: 
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The Statistical Properties of the ILWG Family of Distributions 

Here, we derive some of the mathematical properties of the ILWG. 

Linear Representation of the ILWG's Density and Distribution functions 

Let 
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Also,  
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Therefore, the CDF of the ILWG can be re-written as: 

3 4 3 4

1 2 3 4

( ; )

1 ( ; )

( ) ( )
( ; )

, , , 0
1 ( ; )

( ; , , , ) 1 ( ; )

1

G x

G x

i i i i
G x

i i i i
G x

e
F x H x

e










 





    

−
 

− 
−  

+ +
 

− = 
− 

 
 

= + =  
 

−  

                                     

(13)                                                         where, 

1

3 2 31

3 4

1 1 2
1 2 3 4

1 1 2
( )

4 3

( 1) ( ) ( )
( ) ( 1) ( )

( ) ! ( ) !

! ( )

i
i i ii

i i

t k i i
i i i i

t i i i

i i


 



+

+

−  +  +
+ −  +

 
 =


, and 

3 4

3 4

( )

( ) ( ; ) ( ; ).
i i

i iH x G x


  +

+ =  The PDF corresponding to equation (\ref{328}) is given 

by: 

3 4 3 4

1 2 3 4

( ) ( 1)

, , , 0

( ; , , , ) ( ; )i i i i

i i i i

f x h x     


+ + −

=

=                                         (14) 

Where 3 4

3 4

( ) 1

( 1) 3 4( ; ) ( ) ( ; ) ( ; )
i i

i ih x i i g x G x


     + −

+ − = +  and 3 4( )i i + is the power 

parameter 

The quantile function of the ILWG family of Distributions 

The quantile function of ILWG is given as:  
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Where U is uniformly distributed between 0 and 1. The median of the ILWG family 

can be derived by setting U=0.5 in equation (15) as: 
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Where 1( ; )G x  − is a quantile function of the baseline distribution. 

 

Moments of the ILWG family of Distributions 

Let X be a random variable that follows ILWG with parameters ( , , , ),    then the 

thd moment about the origin is given by: 
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Using some of the results under linear representation of the ILWG, we have the 

moment of the ILWG as: 
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The mean of the ILWG can be derived by setting d=1 in equation (18). In the same 

vein, the second moment can also be derived by setting d=2, and then using the 

relation: 
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2

2 1( ) [ ]Var X   = −                                                                          (19) 

To find the variance. 

 

The Characteristic and Moment Generating Functions of the ILWG Family 

The characteristic function of the ILWG can be given as: 
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0 0

, , , 0

( ) ( ; , , , )itx itx

i i i i

i i i i

t e f x dx e h dx     
 

+ + −

=

= =                            (20) 

And the moment-generating function of the ILWG can be given as: 

3 4 3 4

1 2 3 4

( ) ( 1)
0 0

, , , 0

( ) ( ; , , , )tx tx

X i i i i

i i i i

M t e f x dx e h dx    
 

+ + −

=

= =                            (21) 

 

The Maximum Likelihood Estimation (MLE) of the parameters of the ILWG 

In this section, we used the maximum likelihood method to estimate the parameters of 

the ILWG family of distributions. The Maximum Likelihood approach has the feature 

of ensuring MLEs with interesting properties such as asymptotic unbiasedness and 

normalcy. The asymptotic unbiasedness, in particular, provides theoretical guarantees 

that, for sample size (n) high enough, the MLEs must be near the actual unknown 

parameter values. There is, however, no definite guarantee for very small n. Let 

1 2 3, , , , .nx x x x  be a random sample independently drawn from ILWG family. Then, the 

log-likelihood function ( , , , )L     of equation (4) is given as: 

( )

( )

1 1 1

( ; )
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( ; )
1 1 1
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n n n
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e




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






        


 

= = =

−
−

−
= = =

= + + − −

  
  − − − − − + +
   − 

   

  

  

    (22) 

Where 
( ; )

( ; ) .
1 ( ; )

i
i

i

G x
W x

G x






 
=  

− 
 Taking the partial derivatives of equation (22) with 

respect to , , ,   and  yields: 
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( ; )
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=

  
   = − +

    − 
   

                                         (23) 
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(26) 

Setting the non-linear equations (23), (24), (25), and (26) to zero and then solving them 

simultaneously produced the MLE of the parameters , , ,   and , respectively. 

 

Inverse Lomax Weibull Exponential Distribution (ILWED) 

Definition and Graphical presentations of the ILWED 

The exponential distribution, also known as the negative exponential distribution in 

probability theory and statistics, is the probability distribution of the time between 

events in a Poisson point process, that is, a process in which events occur continuously 

and independently at a constant average rate. It is a sub-model of the gamma 

distribution. The CDF and PDF of the ILWED can be given as: 

[ 1]
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                            (27) 

And 
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(28) 

Where  and   are the shape parameters,  is a scale parameter, and   is the rate 

parameter. The reliability and hazard functions of the ILWED are presented in equations 

(29) and (30). 
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(30) 

 

Figure 1: The PDF of the ILWED at various parameter values 
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Figure 2: The CDF of the ILWED at various parameter values 

 

Figure 3: The Hazard function of the ILWED at various parameter values 

 

The Simulation Studies of the ILWED 

A simulation analysis is carried out and reported here to demonstrate the performance of 

the estimates at some parameter values. The Monte Carlo method is any computational 

methodology using pseudo-random values to solve mathematical problems [32]. The 

numerical study is as follows: 

Step 1: For known parameter values i.e ( , , , )T    = we simulated a random sample of 

size n from the ILWED using Equation (15). Step 2: then Estimate the parameters of the 

ILWED by using MLE. Step 3: Perform 1,000 replications of steps 1 through 2. Step 4: For 

each of the four (4) parameters of the ILWED, we compute the Biases and Root Mean 

Squared Errors (RMSEs) of the parameters from the 1,000 parameter estimates. The 
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sample sizes considered were (n=10, 20, 30, 50, 70, 90, 150, and 170). The statistics are 

given by 

1,000 1,000 1,000
2

1 1 1

1 1 1ˆ ˆ ˆ, ( ) ( ), ( ) ( )
1,000 1,000 1,000

i i i

i i i

Bias RMSE
= = =

 =   =  −  =  −       (31) 

Where ˆˆ ˆ ˆ( , , , )i     =  is the MLE for each iteration (n=10, 20, 30, 50, 70, 90, 150, 170). 

Three cases were considered for the simulation. Case I:(   =  0.7,   =  0.5,   =  0.5 and 

  =  0.05), Case II:(   =  1,   =  0.5,   =  0.5 and   =  0.5), and Case III: (  =  1, 

  =  0.1,   =  0.5 and   =  0.001). Tables (1), (2), and (3) are for Case I, Case II and 

Case III, respectively. 

Table 1: Simulation Results for Case I 

n Estimates Bias RMSE n Estimates Bias RMSE 

10 0.9397 0.2397 0.3589 70 0.8601 0.1601 0.2004 

 
0.7695 0.2695 0.5455 

 
0.6877 0.1877 0.3181 

 
0.7300 0.2300 0.3457 

 
0.6395 0.1395 0.1861 

 
0.0683 0.0183 0.0417 

 
0.0523 0.0023 0.0105 

20 0.9067 0.2067 0.2945 90 0.8560 0.1560 0.1881 

 
0.7169 0.2169 0.4460 

 
0.6822 0.1822 0.2964 

 
0.6807 0.1807 0.2792 

 
0.6327 0.1327 0.1700 

 
0.0580 0.0080 0.0219 

 
0.0517 0.0017 0.0086 

30 0.8853 0.1853 0.2531 150 0.8458 0.1458 0.1702 

 
0.7141 0.2141 0.4186 

 
0.6881 0.1881 0.2704 

 
0.6557 0.1557 0.2313 

 
0.6286 0.1286 0.1563 

 
0.0549 0.0049 0.0163 

 
0.0516 0.0016 0.0069 

50 0.8691 0.1691 0.2227 170 0.8424 0.1424 0.1620 

 
0.6922 0.1922 0.3538 

 
0.6874 0.1874 0.2617 

 
0.6463 0.1463 0.2063 

 
0.6282 0.1282 0.1509 

 
0.0531 0.0032 0.0124   0.0516 0.0016 0.0068 
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Table 2: Simulation Results for Case II 

n Estimates Bias RMSE n Estimates Bias RMSE 

10 1.1941 0.1941 0.4818 70 1.0207 0.0207 0.1979 

 0.6737 0.1737 0.5850  0.5482 0.0482 0.2542 

 0.6156 0.1156 0.3448  0.5375 0.0375 0.1655 

 0.6534 0.1534 0.2967  0.5329 0.0329 0.1067 

20 1.1091 0.1091 0.3586 90 1.0096 0.0096 0.1698 

 0.6287 0.1287 0.4867  0.5326 0.0326 0.2151 

 0.5723 0.0723 0.2564  0.5325 0.0325 0.1400 

 0.5927 0.0927 0.2113  0.5248 0.0248 0.0910 

30 1.0729 0.0729 0.2990 150 1.0058 0.0058 0.1350 

 0.6165 0.1165 0.4321  0.5251 0.0251 0.1723 

 0.5511 0.0511 0.2220  0.5200 0.0200 0.1135 

 0.5666 0.0666 0.1772  0.5149 0.0149 0.0706 

50 1.0351 0.0351 0.2385 170 0.9982 -0.0018 0.1221 

 0.5598 0.0598 0.3007  0.5225 0.0225 0.1538 

 05465 0.0465 0.1924  0.5178 0.0178 0.0925 

 0.5424 0.0424 0.1253  0.5157 0.0157 0.0651 

 

Table 3: Simulation Results for Case III 

n Estimates Bias RMSE n Estimates Bias RMSE 

10 1.0772 0.0772 0.1889 70 1.0152 0.0152 0.0445 

 0.2033 0.1033 0.1566  0.1171 0.0171 0.0400 

 0.5416 0.0416 0.1909  0.4987 -0.0013 0.0491 

 0.0028 0.0018 0.0037  0.0012 0.0002 0.0004 

20 1.0425 0.0425 0.1082 90 1.0129 0.0129 0.0389 

 0.1524 0.0524 0.0926  0.1125 0.0125 0.0332 

 0.5072 0.0072 0.1021  0.4998 -0.0002 0.0436 

 0.0017 0.0007 0.0013  0.0011 0.0001 0.0003 

30 1.0278 0.0278 0.0742 150 1.0107 0.0107 0.0313 

 0.1408 0.0408 0.0751  0.1077 0.0077 0.0241 

 0.4976 -0.0024 0.0764  0.4992 -0.0008 0.0344 

 0.0015 0.0005 0.0008  0.0011 0.0001 0.0002 

50 1.0174 0.0174 0.0573 170 1.0088 0.0088 0.0280 

 0.1240 0.0240 0.0507  0.1070 0.0070 0.0225 

 0.4994 -0.0006 0.0587  0.5005 0.0005 0.0318 

 0.0013 0.0003 0.0005  0.0011 0.0001 0.0002 
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´ 

´ 

As the value of the sample size (n) increases, the simulation results of the ILWED show: 

• Stability of the MLES, 

• The bias of the MLEs approach zero, and  

• Decrease in the RMSEs of the MLEs. 

 

Applications of the ILWED to Three Datasets 

Inverse Lomax Weibull Exponential Distribution (ILWED) was fitted to three 

datasets. This include datasets with increasing and bathtub hazard shapes. The 

Goodness-of-fit criteria used are the Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC). Moreover, three Goodness-of-fir statistics were 

used. These are the Kolmogorov-Smirnov (K-s), Anderson-Darling (A-D), and 

Cramer-Von Mises (C-vM). By comparing the cumulative distribution functions 

(PDFs) of two datasets, the Kolmogorov-Smirnov test determines whether they have 

the same continuous distribution. It is a widely applicable test that helps to compare 

theoretical and empirical distributions and is especially helpful when parametric 

assumptions are not met. The A-D test is useful for determining fit, especially in 

situations with extreme values or interesting tail behavior. It does this by calculating the 

goodness-of-fit between the sample’s empirical distribution function and the specified 

distribution’s cumulative distribution function. This test is sensitive to deviations in the 

distribution’s tails. The C-vM test, named for Carl von Mises and Harald Cramer, 

measures the difference between the sample’s empirical distribution function and the 

specified distribution’s cumulative distribution function to determine whether the sample 

fits the distribution. This test is favored in some circumstances because it is easy to 

compute and provides a good measure of goodness-of-fit. Finally, The negative log-

likelihood (-ll), which is frequently minimized in maximum likelihood estimation, 

measures how well a model fits observed data by estimating the probability of 

observing the data given the model parameters. It is favored for its stability and ease of 

use in parameter estimation and is essential to many different disciplines, including 

biology, econometrics, and machine learning. ILWED was fitted alongside the 

Weibull Inverse Lomax Distribution by (WIL) by [10], Transmuted Generalized 

Exponential Distribution (TGED) by Khan [25], Alpa Power Exponential 

Distribution (APED) by [33], the four parameters Weibull Exponentiated 
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Exponential Distribution (WEED) by [27], another three parameters Weibull 

Exponentiated Exponential Distribution (WExED) by [26], the Inverse 

Exponentiated Odd Lomax Exponential Distribution (IEOLE) by [34], the 

Extended Odd Frechet Weibull Distribution (EOFWD) by [35], Weibull 

Distribution (WD), as well as the Exponential Distribution (ED).  

Application to the Italy Covid-19 Dataset 

These data was reported by the [36], belonging to Italy Covid-19 patients for 172 days, 

from 1 March to 21 August 2020. 

0.0490, 0.0601, 0.0460, 0.0533, 0.0630, 0.0297, 0.0885, 0.0540, 0.1720, 0.0847, 0.0713, 
0.0989, 0.0495, 0.1025, 0.1079, 0.0984, 0.1124, 0.0807, 0.1044, 0.1212, 0.1167, 0.1255, 
0.1416, 0.1315, 0.1073, 0.1629, 0.1485, 0.1453, 0.2000, 0.2070, 0.1520, 0.1628, 0.1666, 
0.1417, 0.1221, 0.1767, 0.1987, 0.1408, 0.1456, 0.1443, 0.1319, 0.1053, 0.1789, 0.2032, 
0.2167, 0.1387, 0.1646, 0.1375, 0.1421, 0.2012, 0.1957, 0.1297, 0.1754, 0.1390, 0.1761, 
0.1119, 0.1915, 0.1827, 0.1548, 0.1522, 0.1369, 0.2495, 0.1253, 0.1597, 0.2195, 0.2555, 
0.1956, 0.1831, 0.1791, 0.2057, 0.2406, 0.1227, 0.2196, 0.2641, 0.3067, 0.1749, 0.2148, 
0.2195, 0.1993, 0.2421, 0.2430, 0.1994, 0.1779, 0.0942, 0.3067, 0.1965, 0.2003, 0.1180, 
0.1686, 0.2668, 0.2113, 0.3371, 0.1730, 0.2212, 0.4972, 0.1641, 0.2667, 0.2690, 0.2321, 
0.2792, 0.3515, 0.1398, 0.3436, 0.2254, 0.1302, 0.0864, 0.1619, 0.1311, 0.1994, 0.3176, 
0.1856, 0.1071, 0.1041, 0.1593, 0.0537, 0.1149, 0.1176, 0.0457, 0.1264, 0.0476, 0.1620, 
0.1154, 0.1493, 0.0673, 0.0894, 0.0365, 0.0385, 0.2190, 0.0777, 0.0561, 0.0435, 0.0372, 
0.0385, 0.0769, 0.1491, 0.0802, 0.0870, 0.0476, 0.0562, 0.0138, 0.0684, 0.1172, 0.0321, 
0.0327, 0.0198, 0.0182, 0.0197, 0.0298, 0.0545, 0.0208, 0.0079, 0.0237, 0.0169, 0.0336, 
0.0755, 0.0263, 0.0260, 0.0150, 0.0054, 0.0375, 0.0043, 0.0154, 0.0146, 0.0210, 0.0115, 
0.0052, 0.2512, 0.0084, 0.0125, 0.0125, 0.0109 , 0.0071. 

  

Table 4: MLEs and Goodness-of-fit Criteria for the fitted ILWED and other comparators for the 

comparators for the Italy Covid-19 Dataset 

Distributions Estimates Standard Error ll AIC BIC 

ILWED ( ), , ,     0.2455 0.0471 197.6782 -387.3565 -374.7665 

 0.0024 0.0002    

 1411.281 246.2645    

 19.9779 4.4775    

WEED ( ), , ,     0.3028 0.2059 196.2795 -384.5591 -371.9691 

 12.0909 23.0638    

 123.2842 1510.8660    

 0.0776 0.1323    
WExED( , ,   ) 0.2669 0.2064 195.7915 -385.5830 -376.1405 

 1.3376 1.9689    

 3.6252 2.2766    
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TGED( , ,   ) 1.3876 0.2222 190.2449 -374.4898 -365.0474 

 11.2037 0.9285    

 -0.4791 0.1896    

APED ( ),   12.333 5.4576 192.5407 -381.0815 -374.7865 

 12.4776 0.9920    

ED ( )  7.6457 0.5829 177.8719 -353.7439 -350.5964 

Table (4) presents the MLEs, log-likelihoods, AICs, and BICs of the ILWED and others. 

The Table indicate that ILWED is the best with minimum values of AIC and BIC. 

Furthermore, Table (5) indicated that the ILWED fitted the data well with small values of 

the Goodness-of-fit statistics.  

Table 5: The Goodness-of-fit statistics of the ILWED and others for the Italy Covid-19 Dataset 

Distributions K-S C-vM A-D 

ILWED 0.0593 0.1190 0.7196 

WEED 0.0617 0.1526 0.9023 

WExED 0.0738 0.2232 1.2740 

TGED 0.1038 0.4544 2.4999 

APED 0.0852 0.3133 1.7961 

ED 0.1712 1.3955 7.0562 

 

 

Figure 4: The TTT-Plot for the Covid-19 Dataset 
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The Total Time on Test (TTT) plot for the Covid-19 Dataset indicates an increasing 

hazard rate (concave shape), as seen in Figure (4). 

 

Figure 5 : Plots of the fitted PDFs a nd CDFs of the ILWED and other deistributions for 

the Covid-19 Dataset 

 

Application to the Airborne Communication Transceiver Dataset 

These data was reported by the [37], for the Repair Times in Hours for an Airborne 

Communication Transceiver. The dataset is as follows: 

0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 

1.50, 1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 4.70, 

5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50.   

 

Table 6: MLEs and Goodness-of-fit Criteria for the fitted ILWED and other comparators for the 

comparators for the Airborne Dataset 

Distributions Estimates Standard Error -ll AIC BIC 

ILWED ( ), , ,     1.1832 0.1923 89.2159 186.4318 193.1873 

 0.0064 0.0040    

 5.6689 4.7566    

 0.0351 0.0175    

WILD ( ), , ,     4.6910 1.7635 94.1066 194.2132 199.2798 

 0.0078 0.0038    

 284.6967 211.7689    

 3.0914 3.3225    
TGED( , ,   ) 1.2234 0.2423 94.1066 194.2132 199.2798 

 0.2086 0.0609    

 0.6441 0.2939    
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APED ( ),   0.0156 0.0833 94.4479 192.8957 196.2735 

 0.0774 0.1043    

WD ( ),   0.9604 0.1089 95.5114 195.0227 198.4005 

 3.9276 0.6873    

ED ( )  0.2492 0.0394 95.5766 193.1532 194.8420 

 

Table (6) presents the MLEs, log-likelihoods, AICs, and BICs of the ILWED and others. 

The Table indicate that ILWED is the best with minimum values of AIC and BIC. 

Furthermore, Table (7) indicated that the ILWED fitted the data well with small values of 

the Goodness-of-fit statistics.  

Table 7: The Goodness-of-fit statistics of the ILWED and others for the Airborne 

Dataset 

Distributions K-S C-vM A-D 

ILWED 0.0969 0.0597 0.3985 

WILD 0.1230 0.0916 0.5908 

TGED 0.1465 0.1300 0.9032 

APED 0.1499 0.1003 1.0214 

WD 0.1290 0.1359 1.0214 

ED 0.1380 0.1574 1.0957 

 

 

Figure 6: The TTT-Plot for the Airborne Dataset 

 

The Total Time on Test (TTT) plot for the Airborne Dataset indicates a decreasing hazard 

rate (convex shape), as seen in Figure (6). 
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Figure 7: The Fitted PDFs and CDFs of the ILWED and other distributions for the Airborne 

Dataset 

 

Figure (7)) indicates that the Strengths data is skewed to the right. ILWED fitted the 

data well compared with the other comparators. 

 

Application to the Fatigue Fracture Dataset 

These data was reported by [38], for the fatigue fracture of Kevlar 373/epoxy at 

fixed pressure until all had failed. The dataset is as follows:  

0.0251, 0.0891, 0.0886, 0.3113, 0.8425, 0.2501, 0.4763, 0.5650, 0.5671, 0.3451, 

0.8645, 0.6566, 0.6751, 0.6748, 0.8375, 0.7696, 0.6753, 0.8391, 0.9836, 0.8851, 

0.9120, 0.9113, 1.0483, 1.0773, 1.1733, 1.0596, 1.5733, 1.7083, 1.2570, 1.7263, 

1.2766, 1.2985, 1.7630, 1.3211, 1.3503, 1.9316, 1.3551, 1.4595, 1.8808, 1.4880, 

1.5728, 1.8881, 1.7460, 1.8275, 1.8375, 1.7746, 1.8503, 1.8878, 1.9558, 2.2100, 

2.0408, 2.0903, 2.1093, 2.1330, 2.2460, 2.0048, 2.2878, 2.3203, 2.3513, 2.4951, 

2.3470, 2.9911, 2.5260, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.9143, 3.7455, 

4.8073, 5.5295, 5.4005, 6.5541, 5.4435, 9.0960.  
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Table 8: MLEs and Goodness-of-fit Criteria for the fitted ILWED and other comparators for the 

comparators for the Fatigue Fracture Dataset 

Distributions Estimates Standard Error -ll AIC BIC 

ILWED ( ), , ,     2.6663 0.5229 120.4480 248.8953 258.2182 

 0.0133 0.0189    

 0.5033 0.1606    

 0.0781 0.0301    

WILD ( ), , ,     0.0184 0.0268 122.5050 253.0090 262.3319 

 1.3408 0.1378    

 0.7831 0.8833    

 0.1398 0.2231    

IEOLED ( ), , ,     0.1993 0.0352 127.6270 263.2534 272.5764 

 1.0492 0.0719    

 549101.3 17416.71    

 54907.17 64.0385    

EOFWD ( ), , ,     0.3409 0.2046 127.9080 263.8156  

 1.8342 0.4719    

 0.1399 0.1894    

 0.7365 0.2436    

WD ( ),   1.3257 0.1138 122.5250 249.0494 253.7108 

 2.1327 0.1945    

ED ( )  0.5104 0.0585 127.1140 256.2287 258.5594 

 

Table (8) presents the MLEs, log-likelihoods, AICs, and BICs of the ILWED and others. 

The Table indicate that ILWED is the best with minimum values of AIC and BIC. 

Furthermore, Table (9) indicated that the ILWED fitted the data well with small values of 

the Goodness-of-fit statistics.  

Table 10: The Goodness-of-fit statistics of the ILOEED and others for the Fatigue 

Fracture Dataset 

Distributions K-S C-vM A-D 

ILWED 0.0747 0.0601 0.3849 

WILD 0.1112 0.1363 0.7908 

IEOLED 0.1436 0.4355 2.2674 

WEED 0.0864 0.0859 0.5296 

EOFWD 0.1297 0.3563 1.9729 

WD 0.1099 0.1353 0.7887 

ED 0.1663 0.57081 2.9881 
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Figure 8: The TTT-Plot for the Times to Fatigue Fracture Dataset 

 

The Total Time on Test (TTT) plot for the Fatigue Fracture Dataset indicates an 

increasing hazard rate, as seen in Figure (8). 

 

Figure 9: The Fitted PDFs and CDFs of the ILWED and others for the Fatigue Fracture Dataset 

 

Figures (9) indicate that the Fatigue Fracture data is skewed to the right. ILWED fitted the 

data well compared with the other comparators. 

 

Conclusion 

In this research, we suggest and investigate a novel probability distribution that is a 

combination of the Inverse Lomax, Weibull, and exponential distributions, combining the 

properties of the three distributions. This merger is required if the data in issue combines both 

the Inverse Lomax, Weibull, and the exponential distributions’ features described in 
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Section 1. We looked into some of its statistical properties, such as moments, the moment 

generating function, the characteristic function, and the quantile function. The parameters 

were determined using the maximum likelihood technique. According to the simulation 

studies, as the sample size grows, the estimations of the Biases and RMSEs approach zero, 

indicating that the estimates are more accurate. Three cases of parameter combination were 

considered for the simulation studies. The estimates were stable. Exemplifications of real-

world datasets demonstrate the ILWED’s significance. For the three datasets used, the 

proposed distribution is the best with minimum values of the Goodness-of-fit criteria and 

Goodness-of-fit statistics. This means ILWED can be used to fit datasets with increasing 

and decreasing hazard rates. Based on these facts, we hope that the ILWED will be 

preferred above the other models considered in this study. Only datasets from the industry 

were considered to fit the proposed distribution. We suggest that other areas should be 

explored in terms of the application of the proposed distribution. Also, other methods of 

estimation can be considered in further studies. 
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