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Abstract 
 

This paper introduces a novel Trigonometric-Fitted One-Step 3 Points Hybrid 

Block Method tailored for addressing the complexities associated with stiff and 

oscillating differential equations.The continuous hybrid technique was created 

using the interpolation method and the collocation of the trigonometrical 

function as the basis function. It was then evaluated at non-interpolating points 

by inculcating the transformation method to produce a continuous block 

method. When the continuous block was assessed at each stage, the discrete 

block approach was regained. Upon investigation, the fundamental 

characteristics of the techniques were discovered to be zero-stable, consistent, 

and convergent. The new method is used to solve a few stiff and oscillatory 

ordinary differential equation problems. Comparisons of numerical results of 

the derived methods, it was found that our approach provides a better 

approximation than the existing method cited in the reference. 

AMS subject classification: 65L05, 65L06, 65L20 
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Introduction 

In this paper, we present a detailed exposition of the Trigonometric-Fitted One-Step 3 

Points Hybrid Block Method, elucidating its formulation and elucidating the underlying 

principles by considering an approximate solution of second order ordinary differential 

equations using the one-step three off grid point hybrid approach of the type  

        
( )'' , , ' , , ' ' ,

0 0
0 0

1y f x y y y t y y t y
   

     
     
      

    
   

= = =

                                                 

Numerous methods can be used to determine the known frequency of oscillation in the 

analytical solutions. Due to its numerous applications in a wide range of fields, such as 

theoretical physics and oscillatory motion, theoretical chemistry, classical mechanics, fluid 

dynamics, quantum mechanics, modeling scientific and engineering, celestial mechanics, 

and so forth, equation (1) is of particular interest to researchers. It may be difficult to solve 

several of these issues analytically, thus developing numerical techniques is necessary to get 

approximations of the solutions. 

Numerous writers have presented numerous numerical algorithms in their works that 

precisely integrate a set of linearly independent variables for the solution of (1).[1] suggests 

a set of k-step block falkner methods that are trigonometrically fitted for solving equation 

(1); [2] suggests a backward differentiation formula that is trigonometrically fitted in blocks; 

and [3] suggests a two-step trigonometrically fitted method.  

Among the scholars who have recently embraced the trigonometrically fitted approach in 

lieu of the direct method for approximating (1) are [ 4, 5, 6, 7, 8, 9, 10]. 

In this paper, we present a detailed exposition of the Trigonometric-Fitted One-Step 3 

Points Hybrid Block Method, elucidating its formulation and elucidating the underlying 

principles. We showcase the method's capabilities through numerical experiments and 

comparisons with existing techniques, demonstrating its efficacy in solving stiff and 

oscillating problems. The structure of the paper is as follows: Section 2 covers the materials 

and techniques used in the method's development. In Section 3, the method's basis 

properties are analyzed, numerical experiments are conducted to test the developed 

method's efficiency on a few numerical examples, and the findings are discussed. Finally, 

we wrapped up in section 4. 

. 
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Derivation of the Method 

The continuous representation of the one step trigonometric function as the approximate 

solution shall be derive to generate the main method which we shall set up to obtain the 

block method. We consider a trigonometric approximate solution of the form  

                          

1
(t) (sin cos )

0

q p
x xj

j
 

+ −
= +

=                                            (2) 

Equation (2) is obtained by considering the trigonometric function as approximate solution 

and                                      

 5p= and 2u= are the numbers of points of  collocation and interpolation, the second 

derivative of (2) gives 

                            

1
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2

. . .
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jj
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                         (3)                                             

The continuouos approximation is then constructed by imposing two conditions which are 

                                                          

1
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                                     (4) 

 

Collocating (3) at all points and interpolating (2) at 

1
0 ,

4
u=

 result to the system of non 

linear equation of the form 

  

                                             UXA=                                                                              (5) 
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The system of (5) is solve to obtain the unknown parameter

( )' , 0 1 6s j

j

 =

. By the 

substitutions of the values of 

's

j



obtained into equation (2) and using transformation 

from [12] gives 
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 (6) 

 substituting (6) in (3) gives a continuous hybrid linear multistep method of the form  

                             

3
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        We then impose (4) on 
t

 
 
 
 
 
  in (7) and the coefficients 
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differentiating of (7) once gives  
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                                      (8) 

eveluating (7) and (8) at all points and simplifying gives the  discrete hybrid block method 

of the form    

                                  

1
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We obtain the following discrete scheme 

0
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Analysis of  Basic Properties of the Method  

Order of the Block 

According to fatunla (1991) and lambert (1973) the truncation error associated with (2) is 

defined by 

4
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Assumed that 
y x
 
 
 
 
  can be differentiated. Expanding (9) in Taylor’s series and comparing 

the coefficient of h  gives the expression    
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Where the constant coefficients are given below 
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Definition 1: the linear operator and the associated continuous linear multistep method 

(10) are said to be of order p  if 
... 0 0, 0 ,0 1 2 1 2 2c c c c c and c cp p p p= = = = = = + + +  is called 

the error constant and the local truncation error is given by 

 

For our method                          

Comparing the coefficient of h   gives 6. . . 00 1 2 3C C C C C= = = = = =
and 

7
107 271 1
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C

T
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Hence our method is of order five (5). 

 

Consistency 

The One-step Hybrid trigonometrically fitted second derivative is consistent since it has 

order is greater than or equal to one.  

 

Zero Stability of Our Method 

The One-Step One Hybrid Block trigonometrically fitted fourth derivative hybrid method  

is said to be zero-stable if as 0→h  , the root 

1, 0 1
4

z ii
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 and for those roots 

with iz
=1, multiplicity must not exceed two.  
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Convergency 

The compulsory terminolgy for the trigonometrically fitted to be convergent is that they 

must be consistent and zero-stable. Hence, our method converges since all conditions are 

satisfied. 

Linear Stability 

According to Hairer and Wanner, the concept of A-satbility is discussed by applying the 

test equation 

k
k

y y 
  
 

 
 
 =

                                                     

to yield 

                         1( ) ,m mY z Y z h −= =
                            

where is the amplification matrix given by  

( ) ( ) ( ) ( )0 1 10 0 1 12 2( ) ( ) ( )z z z z z      −= − − − −

 

                        

The matrix  has eigen values 
(0, 0, , )

k


 where k


 is called the stability function. 

Thus, ths stability function of our methodwith four off-grid points is given by        

16203 255236 212896 12754944 26542080

20736 241920 262656 12257280 26542080

4 3 2
4 3 2

z z z z

z z z z
 − + + − +=

− + + − +  

 

Region of Absolute Stability 

The stability polynomial of our method is found to be 

1 5401 7 91171 19 66143 133 2071 2
1280 8847360 768 6635520 1920 829440 288 2880

4 4 3 3 4 2 4 3 4 3 4 3h w w h w h w w h w w w w
       
       
       
       
       
       

− + + − + + − − + −

 

3.3 Mathematical Computation of the method 

 

Problem I We consider the stiff equation (Source: Adeniran  and Olanegan (2019)) 

z
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( )'' 100 99sin , 0 1 , ' 0 11
1

320
y y y y hx

   
   
   
   
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=− + = = =

 

Exact Solution: 
( ) ( ) ( )cos ,10 sin 10 siny x x x x 

 
 

= + +
 

Table 1 Comparison of the proposed method with Adeniran and Olanegan (2019) 

x-values Error in our 
method 

Error in [3] 

0.1 8.91000E-17 9.99E-14 

0.2 1.7580E-16 1.20 E-13 

0.3 2.5970E-16 7.90E-13 

0.4 3.4110E-16 1.69E-13 

0.5 4.1920E-16 5.00E-13 

0.6 4.9410E-16 2.00E-13 

0.7 5.6600E-16 8.99 E-14 

0.8 6.3460E-16 2.00 E-13 

0.0 6.9940E-16 3.00E-13 

1.0 7.6090E-16 2.99E-13 

 

Problem II Consider the highly Oscilatory equation (source: Adeniran and Edaogbogun 

(2021)) 

 
'' , 0 1, ' 0 2, 2 , 0.012y y y y h    

   
   
   

=− = = = =
 

Exact Solution: 
cos2 sin2y x x x 

 
 

= +
 

x-
values 

Error in our 
method 

Error in [11] 

0.1 4.0000E-18 4.3881E-11 
0.2 7.8000E-18 7.9019E-11 
0.3 1.1500E-17 2.5525E-10 
0.4 1.5200E-17 1.1525E-10 
0.5 1.8800E-17 1.9079E-10 
0.6 2.2400E-17 2.3002E-10 
0.7 2.5900E-17 2.7014E-10 
0.8 2.9300E-17 3.1112E-10 
0.9 3.2700E-17 3.5291E-10 
1.0 3.5800E-17 3.9545E-10 
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Conclusions 

It is evident from the above tables that our proposed method has significant improvement 

over the existing methods. Trigonometric-Fitted One-Step 3 Points Hybrid Block Method 

is proposed for direct solution of general second order stiff and oscillatory problems where 

by it is self-starting when implemented. The developed method converges and is of order 

five. 

 

References 

[1] Awe, G.S., Akinbi, M.A., Abdulganiy, R. I., Olutimo, A.L., & Oyebo, Y.T. (2023): A 
Family of  k-step trigonometrically fitted block Falkner Methods for  Solving second 
order initial value problems with Oscillating Solutions . Advances in Mathematics: 
Scientific Journal 12, 8 775-803 

[2] Abdulganiy, R. I., Akinfenwa, O. A. & Okunuga, S. A. (2021). Block Trigonometrically 
Fitted Block Backward Differentiation formula for the Initial Value Problem with 
Oscillating Solutions. Nigerian Journal of  Basic and Applied Science, 29(1): 01-12. 
DOI: http://dx.doi.org/10.4314/njbas.v29i1.1 

[3]Adeneran, A. O., & Olanegan, O.O., (2019). Two step Trigonometrically Fitted Method 
for Numerical Solution of the Initial Value Problem with Oscillating Solutions. 
Journal of Advances in Mathematics and Computer Science, 30(3): 1-7. 

[4]Abdulganiy, R. I. (2018). Trigonometrically Fitted Block Backward Differentiation 
Methods for First Order Initial Value Problems with Periodic Solution. Journal of 
Advances in Mathematics and Computer Science, 28(5): 1-14.  

[5]Abdulganiy, R. I., Akinfenwa, O. A. & Okunuga, S. A. (2017). Maximal Order Block 
Trigonometrically Fitted Scheme for the Numerical Treatment of Second Order 
Initial Value Problem with Oscillating Solutions. International Journal of 
Mathematical Analysis and Optimization, 2017: 168-186 

[6]Abdulganiy, R. I., Akinfenwa, O. A. & Okunuga, S. A. (2018). Construction of L Stable 
Second Derivative Trigonometrically Fitted Block Backward Differentiation Formula 
for the Solution of Oscillatory Initial Value Problems. African Journal of Science, 
Technology, Innovation and Development, 10(4): 411-419. 

[7]Jator, S. N., Swindell, S., and French, R. D. (2013). Trigonmetrically Fitted Block 
Numerov Type Method for ( ). Numer Algor, 62: 13-26 

[8] Ngwane, F. F. & Jator, S. N. (2014). Trigonometrically-Fitted Second Derivative 
Method for Oscillatory Problems. Springer Plus, 3:304.  

[9] Ngwane, F. F. & Jator, S. N. (2015). A Family of Trigonometrically Fitted Enright 
Second Derivative Methods for Stiff and Oscillatory Initial Value problems. Journal 
of Applied Mathematics. 2015, 1-17.  

[10] Ngwane, F.F. & Jator, S.N. (2013b). Block hybrid method using trigonometric basis 
for initial problems with oscillating solutions. Numerical Algorithm, 63: 713-725. 



Raymond Dominic, Adedokun Opeyemi Benjamin, Olanrewaju Philip Oladapo 

Volume 1, Issue 1, July 2024 471 

[11] Adeniran A.O., Edaogbogun K. (2021) Half Step Numerical Method for Solution of 
Second orderinitial value problems. Academic Journal of Applied Mathematical 
Sciences,Vol. 7, Issue. 2, pp: 77-81,  

[12] Kayode, S.J., & Obarhua, F. O  (2015) 3-Step y-function hybrid methods for direct 
numerical integration of second order IVPs. Theoritical Mathematics & Applications,Vol. 
5, Issue. 1, pp: 39-51,  

 

 

 

 

 


