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Abstract 

 
Water health monitoring is critical for ensuring safe drinking water and 
preventing waterborne diseases. Traditional methods for detecting coliform 
bacteria, including culture-based techniques and biochemical tests, are well-
established but face limitations such as time consumption, high costs, and 
labor intensity, particularly in resource-limited settings like Nigeria. Recent 
cholera outbreaks in Nigeria have underscored the urgent need for more 
effective and timely water quality monitoring solutions. This review explores 
the application of machine learning (ML) techniques in enhancing the 
detection of coliform bacteria, offering a promising alternative to traditional 
methods. ML approaches, including Support Vector Machines (SVMs), 
Convolutional Neural Networks (CNNs), and Ensemble Methods, are 
evaluated for their potential to provide faster, more accurate, and scalable 
detection of coliform contamination. The review highlights key challenges, 
such as data quality, computational demands, and infrastructure limitations, 
and discusses real-world case studies demonstrating the practical applications 
and limitations of ML techniques. The integration of ML models into water 
monitoring systems shows considerable promise but requires addressing 
critical issues related to data quality and model feasibility in low-resource 
settings. Future research directions include exploring hybrid systems that 
combine ML with traditional methods, leveraging emerging technologies like 
edge computing, and enhancing model robustness through innovative data 
strategies. By advancing the application of ML in water health monitoring, it is 
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possible to improve public health outcomes and effectively manage waterborne 
diseases. 

Keywords: Machine Learning, Coliform Bacteria Detection, Water Quality 
Monitoring, Support Vector Machines (SVM), Convolutional Neural Networks 
(CNN)  

 

 

Introduction 

Water health monitoring is essential for ensuring the safety and quality of drinking water, 

which is fundamental to public health. Contaminated water can lead to severe health 

problems, including diseases caused by coliform bacteria and more acute waterborne 

illnesses like cholera (Ali et al. 2021). Coliform bacteria, particularly Escherichia coli (E. coli), 

are commonly used as indicators of fecal contamination in water sources (Devane et al., 

2020). The presence of coliforms suggests that pathogenic organisms may be present, 

posing risks for various health issues such as gastroenteritis, dysentery, and urinary tract 

infections (UTIs). Gastroenteritis, often caused by pathogenic strains of E. coli, leads to 

symptoms like diarrhea, abdominal pain, and vomiting, while dysentery is characterized by 

severe diarrhea with blood and mucus, and UTIs can be exacerbated by consuming 

contaminated water (Ranasinghe & Fhogartaigh 2021). 

In Nigeria, the critical need for water health monitoring is starkly highlighted by the recent 

cholera outbreaks, which underscore the urgent demand for improved water quality 

management (Kwikima, 2024). Cholera, caused by the bacterium Vibrio cholerae, is a severe 

diarrheal disease that can lead to rapid dehydration and death if not treated promptly (Weil 

& LaRocque 2020). The devastating effects of cholera include high mortality rates, 

particularly among vulnerable populations such as children and the elderly, where it can 

lead to death within hours if not promptly treatedAccording to the Nigeria Centre for 

Disease Control and Prevention (2024), the 2024 cholera outbreak in Nigeria starkly 

highlights the challenges of managing such crises. By mid-2024, there have been 2,809 

suspected cases and 82 deaths, with Lagos accounting for 1,560 of these cases (CDC 2024). 

The economic impact is profound, straining healthcare resources, disrupting local 

economies, and inducing widespread fear and community disruption, thereby placing a 

significant burden on public health systems (CDC 2024). The outbreak has been 

exacerbated by inadequate sanitation infrastructure, limited access to clean water, and 

socioeconomic challenges that hinder effective disease prevention and response (Ngingo et 
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al. 2023). Traditional detection methods for coliform bacteria, such as culture-based 

techniques and biochemical tests, while valuable, have limitations in terms of time, cost, 

and accuracy (Canciu et al. 2021). These methods are often labor-intensive and may not 

provide the timely results needed for effective public health interventions. The ongoing 

cholera outbreaks highlight the critical need for more efficient and reliable detection 

methods to address waterborne diseases effectively and improve public health outcomes. 

Machine learning (ML) techniques offer a promising alternative by enabling faster, more 

accurate, and scalable detection of coliform bacteria and pathogens (Oon et al. 2023). ML 

approaches can enhance traditional methods by analyzing large datasets, identifying 

patterns, and providing real-time insights into water quality (Huang et al. 2021). This review 

aims to evaluate and summarize the application of ML techniques in improving the 

detection of coliform bacteria in water sources, focusing on addressing the challenges faced 

in Nigeria. By leveraging ML technologies, it is possible to enhance water health 

monitoring practices, ultimately contributing to better public health outcomes and more 

effective management of waterborne diseases. 

 

Literature Review 

Traditional Detection Methods 

Culture-Based Techniques: Traditional culture-based techniques, such as multiple-tube 

fermentation, membrane filtration, and the Most Probable Number (MPN) test, have long 

been the cornerstone of coliform detection (Malabadi et al. 2024). Multiple-tube 

fermentation involves inoculating water samples into a series of tubes with selective media 

and observing gas production to indicate coliform presence (Some et al. 2021). Membrane 

filtration entails filtering water through a membrane and culturing colonies on selective 

media (Chaukura et al., 2020). The MPN test estimates coliform concentration by statistical 

analysis of positive results in a series of inoculated tubes (Cooper et al. 2024). While these 

methods are well-established, their application in resource-limited settings like Nigeria 

raises several critical questions. Maintaining the required incubation conditions and quality 

control can be challenging in areas with unreliable electricity. Additionally, the cost of 

specialized media and equipment may not be justifiable given the financial constraints faced 

by many Nigerian laboratories. Moreover, the time-consuming nature of these methods 

which often requires 24 to 48 hours for results can delay the identification of 
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contamination, which is particularly concerning in regions experiencing frequent 

waterborne disease outbreaks (Bailey et al., 2021). 

Biochemical Tests: Biochemical tests, such as the IMViC series and the use of selective 

media like MacConkey and Eosin Methylene Blue (EMB) agars, are critical for confirming 

coliform presence (Amin et al. 2022). The IMViC series differentiates coliforms based on 

metabolic byproducts, while selective media isolates and differentiates coliforms based on 

lactose fermentation. However, the practical challenges of using these tests in Nigeria are 

significant. The necessary reagents and media may not always be consistently available or 

affordable. Laboratories also face difficulties in ensuring precise handling and 

interpretation in the absence of adequate training and support. The reliance on costly 

reagents and media highlights the need for alternative approaches that can deliver accurate 

results without the associated financial burden (Khosla et al. 2022). 

Limitations: The limitations of traditional methods in Nigeria highlight the need for 

innovative solutions. The extensive time required for traditional methods to produce 

results can impede timely public health interventions, potentially exacerbating outbreaks of 

waterborne diseases (Hyllestad et al., 2021). The labor-intensive nature of these techniques 

necessitates skilled personnel and consistent procedural execution, which may be difficult 

to maintain in under-resourced settings (Ain et al. 2024). The high cost of specialized 

equipment and reagents further restricts the widespread implementation of these methods 

burden (Khosla et al. 2022). Given these constraints, there is a compelling justification for 

exploring more efficient and cost-effective alternatives. 

Machine Learning in Environmental Monitoring 

The application of machine learning (ML) techniques in environmental monitoring 

presents a promising avenue for overcoming the limitations of traditional coliform 

detection methods, particularly in resource-constrained settings like Nigeria (Ferreira et al. 

2020). ML algorithms can analyze data from water quality sensors, images, and historical 

records to detect coliform contamination with greater speed and accuracy (Li et al., 2020). 

Supervised learning techniques, such as classification algorithms, can distinguish between 

contaminated and non-contaminated samples based on features extracted from sensor data 

or images (Sarker, 2021). Unsupervised learning can identify underlying patterns in large 

datasets that may indicate contamination (Liu et al., 2022). Deep learning models, including 

Convolutional Neural Networks (CNNs), can analyze complex data such as images from 
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water quality sensors (Sha et al. 2021). However, critical questions arise regarding the 

implementation of ML in Nigeria. Local institutions must address how to effectively collect 

and utilize data for training ML models amid variability in data quality and availability. 

Additionally, the costs associated with deploying and maintaining ML-based systems need 

to be compared to traditional methods. While ML offers potential advantages such as real-

time monitoring and reduced reliance on expensive reagents and equipment, its 

effectiveness will hinge on overcoming challenges related to data quality, infrastructure 

needs, and the development of local expertise in ML technologies (Delseny et al. 2021). 

Comparative Analysis: Comparing ML techniques with traditional methods highlights 

several key points. Traditional methods, while reliable, are often slow and resource-

intensive, requiring significant time, labor, and financial investment (Ain et al. 2024). In 

contrast, ML techniques have the potential to provide faster results and operate on data 

collected from more accessible and less expensive sources, such as low-cost sensors 

(Ferreira et al. 2020). The ability of ML to process large volumes of data and provide real-

time analysis can improve the responsiveness to contamination events, a crucial factor in 

managing waterborne diseases (Huang et al., 2021). However, the successful integration of 

ML into water monitoring systems in Nigeria will require addressing issues related to data 

quality, infrastructure, and training. While ML represents a promising advancement, it must 

be evaluated in the context of its practical feasibility and cost-effectiveness compared to 

traditional methods. 

 

Machine Learning Techniques for Coliform Detection 

Machine learning (ML) techniques are increasingly being applied to enhance the detection 

of coliform bacteria in water, providing promising alternatives to traditional methods 

(Canciu et al., 2021). These advanced approaches excel in analyzing complex datasets, 

identifying patterns, and offering real-time insights, which are essential for effective water 

quality monitoring. Among the various ML methods employed are Support Vector 

Machines (SVMs), Convolutional Neural Networks (CNNs), and Ensemble Methods.  

Support Vector Machines (SVM): Support Vector Machines (SVMs) are a powerful tool 

for classifying water samples based on features relevant to coliform detection. SVMs work 

by finding the optimal hyperplane that separates different classes of data points, in this 

case, coliform-contaminated versus non-contaminated water samples (Talnikar et al. 2024). 
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By using various kernel functions, SVMs can handle both linear and non-linear 

classification tasks. For instance, in coliform detection, features such as turbidity, pH, and 

temperature of water samples can be input into the SVM model. SVMs then classify these 

features into distinct categories, helping to identify contaminated samples (Azrour et al. 

2022). Despite their effectiveness, SVMs require careful tuning of parameters and may be 

computationally intensive, which could be a limitation in resource-limited settings. 

Convolutional Neural Networks (CNN): Convolutional Neural Networks (CNNs) are 

particularly useful for analyzing image-based data from water samples or sensor outputs 

(Wang et al. 2021). CNNs can automatically and adaptively learn spatial hierarchies of 

features from images, making them suitable for detecting patterns indicative of coliform 

contamination. For example, CNNs can be applied to images of water samples or output 

from sensors that capture visual or spatial data related to water quality. By training on large 

datasets of labeled images or sensor data, CNNs can learn to distinguish between 

contaminated and clean samples with high accuracy (Chang et al. 2020). However, CNNs 

require substantial computational resources and large amounts of training data, which 

might be a challenge in settings with limited technological infrastructure (Salehi et al. 2023). 

Ensemble Methods: Ensemble methods, such as Random Forests and Gradient 

Boosting, combine multiple machine learning models to improve detection accuracy and 

robustness (Sahin, 2020). Random Forests consist of a collection of decision trees that vote 

on the classification of water samples, with the final decision being based on the majority 

vote from all trees (Hannan & Anmala 2021). This method is effective in handling diverse 

and noisy datasets, which is common in water quality monitoring (Sahin, 2020). Gradient 

Boosting, on the other hand, builds models sequentially, where each new model corrects 

the errors of its predecessor, thereby improving overall prediction performance (Hannan & 

Anmala 2021). Both methods can enhance the accuracy of coliform detection by 

aggregating the strengths of multiple models and reducing the impact of individual model 

errors (Hannan & Anmala 2021). However, these methods can be complex to implement 

and may require significant computational resources. 

Feature Selection and Data Preprocessing 

Feature Engineering: Feature engineering involves selecting and extracting relevant 

features from raw data to enhance the performance of machine learning models (RM et al. 

2020). In the context of coliform detection, this may include water quality parameters such 
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as turbidity, pH, temperature, and chemical composition, as well as data from sensors that 

measure these parameters. Effective feature engineering ensures that the most informative 

attributes are used by the ML models, improving their ability to distinguish between 

contaminated and clean water samples (Huang et al. 2021). For instance, combining 

turbidity and pH values might provide a more comprehensive picture of water quality 

compared to individual parameters alone. The challenge in resource-limited settings is to 

identify and extract relevant features from available data sources, which may be constrained 

by the quality and quantity of data collected (Salehi et al. 2023). 

Data Preprocessing: Data preprocessing is a crucial step for preparing data for machine 

learning model training (Maharana et al. 2022). It includes handling missing values, 

normalizing data, and addressing other issues that may affect model performance. In the 

context of coliform detection, preprocessing steps might involve filling in missing data 

through imputation methods, scaling numerical features to ensure they fall within a 

comparable range, and removing outliers that could skew the results. Techniques such as 

data augmentation can also be employed to increase the robustness of models by 

generating additional training samples from existing data (Rebuffi et al. 2021). In settings 

with limited resources, efficient data preprocessing is essential to ensure that the ML 

models are trained on high-quality data, leading to more accurate and reliable detection 

outcomes (Fan et al. 2021). 

 

Comparative Analysis 

A comprehensive comparative analysis of machine learning (ML) techniques for coliform 

detection is crucial for assessing their effectiveness and potential benefits compared to 

traditional methods. Such an analysis highlights both the strengths and limitations of 

various ML approaches, providing valuable insights for future research and development in 

water quality monitoring. 

Performance Metrics 

Accuracy: Accuracy measures the proportion of correctly classified instances (both 

positive and negative) out of the total number of instances. In the context of coliform 

detection, accuracy indicates how well machine learning (ML) models predict the presence 

or absence of coliform bacteria compared to traditional methods (Polat et al. 2020). While 

high accuracy is desirable, it is important to consider the context in which it is achieved. 
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For example, in imbalanced datasets where the number of non-contaminated samples 

greatly exceeds contaminated samples, high accuracy may not necessarily reflect effective 

detection performance (Chavez et al. 2022). Comparative studies should examine how ML 

models achieve accuracy relative to traditional methods, which may involve culture-based 

techniques or biochemical tests. 

Precision and Recall: Precision measures the proportion of true positive detections 

(correctly identified coliform-contaminated samples) among all positive predictions made 

by the ML model (Powers, 2020). Recall (or sensitivity) measures the proportion of true 

positives among all actual positives. The balance between precision and recall is crucial for 

evaluating ML models, as it reflects the trade-off between false positives (incorrectly 

identified contaminated samples) and false negatives (missed contaminated samples) 

(Varoquaux & Colliot 2023). For coliform detection, high precision reduces the risk of false 

alarms, while high recall ensures that most contaminated samples are detected. Analyzing 

these metrics helps in understanding the effectiveness of ML models in practical scenarios 

where both false positives and false negatives can have significant consequences. 

F1 Score and AUC: The F1 score is the harmonic mean of precision and recall, providing 

a single metric that balances the two aspects (Chicco & Jurman 2020). It is particularly 

useful when dealing with imbalanced datasets, where one class (e.g., non-contaminated 

water) is much more prevalent than the other. The Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC) measures the ability of a model to distinguish between 

classes across various thresholds, with a higher AUC indicating better model performance 

(Carrington et al. 2021). Together, the F1 score and AUC provide a comprehensive view of 

the ML model's overall performance and robustness in detecting coliform bacteria. 

Case Studies 

Examining real-world case studies where ML techniques have been applied to coliform 

detection provides valuable insights into their practical effectiveness and challenges. For 

example, in urban settings like Lagos, Nigeria, ML algorithms have been utilized to analyze 

data from low-cost sensors monitoring water quality parameter (Omeka, M. E. (2024). 

Techniques such as Random Forests and Support Vector Machines (SVMs) have 

demonstrated notable improvements in identifying coliform contamination, offering 

enhanced speed and accuracy over traditional methods (Astuti et al. 2021). However, this 

implementation faced significant hurdles, including extensive data preprocessing required 
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due to inaccuracies from the sensors and challenges integrating ML models into existing 

water management systems (Drogkoula et al. 2023). Conversely, in rural Kenya, the use of 

Convolutional Neural Networks (CNNs) to analyze images of water samples collected with 

mobile phone cameras has shown potential (Mukonza & Chiang 2023). These models 

effectively detect visual indicators of contamination, such as changes in color and turbidity, 

with reasonable accuracy. Nonetheless, the process is not without its difficulties. Varying 

lighting conditions and inconsistent image quality have highlighted the need for more 

robust image processing techniques and thorough model training to address these 

challenges (Drogkoula et al. 2023). In India, an ensemble approach that combines Gradient 

Boosting with Neural Networks has been applied to enhance coliform detection in water 

treatment facilities (Satish et al. 2024). This approach has successfully improved detection 

accuracy and reduced result turnaround times compared to traditional culture-based 

methods. However, the high computational cost associated with training complex models 

and the necessity for continuous updates based on evolving water quality data present 

ongoing challenges ((Mukonza & Chiang 2023). 

These case studies illustrate the diverse applications of ML in water quality monitoring and 

underscore both the advancements and obstacles encountered in different settings. While 

urban and rural implementations showcase significant improvements in detection 

capabilities and operational efficiency, they also highlight the need for addressing data 

quality, computational demands, and integration issues to fully realize the potential of ML 

in water management Ghobadi & Kang 2023). 

Integration and Implementation 

Integrating machine learning (ML) models into water monitoring systems marks a 

significant advancement in coliform detection. This involves designing and developing 

both prototype systems and commercially available solutions. Practical deployment and 

testing of these ML models in real-world environments are essential to assess their 

effectiveness, reliability, and usability across various conditions. 

System Design 

Prototype Development: The development of ML-based prototypes for water monitoring 

involves both hardware and software components. Hardware considerations include 

selecting appropriate sensors for measuring water quality parameters such as turbidity, pH, 

temperature, and coliform presence (Silva et al., 2022). These sensors need to be 
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compatible with the ML system and capable of providing accurate and timely data. The 

software component involves developing or integrating ML algorithms that process sensor 

data to detect coliform contamination (Shyu et al., 2023). This includes building data 

pipelines for real-time analysis, user interfaces for displaying results, and systems for data 

storage and management. Prototype development often requires iterative testing and 

refinement to ensure that the hardware and software components work seamlessly 

together, delivering reliable and actionable insights (Ammar & Shaban-Nejad 2020). 

Commercial Systems: Several commercial systems have successfully integrated machine 

learning (ML) for coliform detection, ranging from portable testing kits to extensive water 

monitoring solutions. Companies like Xylem and Hach offer advanced water quality 

analyzers that utilize ML algorithms to enhance the detection of contaminants, including 

coliform bacteria (Snazelle, 2020). These systems combine ML models with high-precision 

sensors and automated data processing to provide real-time monitoring and alerts for 

improved water safety (El-Shafeiy, et al. 2023). Commercial solutions often come with 

user-friendly interfaces, remote monitoring capabilities, and support for data integration 

with other water management systems (Palermo et al. 2022). The success of these 

commercial systems highlights the potential for ML to transform water quality monitoring, 

making it more efficient and accessible. 

Field Applications 

Practical Testing: The deployment and testing of ML models in real-world settings are 

crucial for evaluating their practical utility and performance. Practical testing involves 

deploying prototypes or commercial systems in diverse environments, such as urban water 

treatment facilities, rural water sources, and industrial sites (Habiyaremye, 2020). Key 

factors assessed during field testing include the system's effectiveness in accurately 

detecting coliform contamination, its reliability under varying environmental conditions, 

and its usability for end-users (Bedell et al. 2022). This phase often reveals challenges such 

as sensor calibration, data quality issues, and integration with existing monitoring 

infrastructure (Okafor et al., 2020). Effective field testing also involves gathering feedback 

from users to refine the system's functionality and address any operational concerns (Riccio 

et al., 2020). 
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Discussion 

The integration of machine learning (ML) techniques into coliform detection for water 

monitoring presents numerous benefits but also comes with its set of challenges. In the 

context of Africa and other developing regions, including Nigeria, the application of 

machine learning (ML) for coliform detection in water monitoring presents both promising 

opportunities and significant challenges. The transformative potential of ML techniques, 

such as Support Vector Machines (SVMs) and Convolutional Neural Networks (CNNs), is 

evident in their ability to enhance detection accuracy and speed compared to traditional 

methods. Jiménez-Rodríguez, (2022) demonstrated that ML models could substantially 

reduce detection times and improve precision, which is particularly beneficial in regions 

struggling with frequent waterborne disease outbreaks. However, the advantages of ML are 

tempered by critical challenges, especially in settings with limited resources. Data quality 

issues are a prominent concern, as ML models require comprehensive and accurate datasets 

to perform effectively. Research by Owusu, (2023) highlighted that in rural Nigeria, where 

data collection infrastructure is often inadequate, ML models might underperform relative 

to traditional methods due to data gaps. This was further exacerbated by, Bejani & Ghatee 

(2021). (2023), noting that insufficient training data can lead to overfitting, thereby 

diminishing the model's reliability in practical applications. The computational demands of 

advanced ML techniques also pose a significant barrier. While deep learning networks can 

achieve impressive accuracy, their high computational requirements may not align with the 

capabilities of local infrastructure in developing regions (Menghani, 2023). Kiyasseh et al. 

(2022) found that the cost and maintenance of sophisticated computing resources could 

limit the feasibility of implementing such models in low-resource settings. This issue 

contrasts with findings from simulations that indicate less resource-intensive ML models 

could offer a more viable alternative (Gill et al. 2022). 

Emerging trends in ML technology offer potential solutions to these challenges. Edge 

computing, which allows ML models to run on low-power devices, is one such 

advancement that could make ML-based water monitoring systems more accessible in 

remote areas. Specifically, Iftikhar et al. (2023) observed that edge computing could 

mitigate the need for high-performance infrastructure, thus enhancing the feasibility of 

deploying ML solutions in resource-constrained environments. Similarly, the integration of 

ML with affordable sensor technologies has shown promise. According to the findings by 

Dabrowska et al. (2024), combining low-cost biosensors with ML algorithms could 



Abel Onolunosen Abhadionmhen & Stanley Ebhohimhen Abhadiomhen 

Volume 1, Issue 1, July 2024 377 

enhance coliform detection capabilities while maintaining cost-efficiency, aligning with 

successful real-world implementations. 

Future research should address the critical issues of data quality and model generalizability. 

Generating synthetic data could enhance the robustness of ML models in data-scarce 

settings. Additionally, federated learning approaches might improve performance across 

diverse datasets while preserving data privacy. Additionally, exploring hybrid systems that 

integrate ML with traditional testing methods could provide a balanced approach. 

Combining these methods could leverage the strengths of both, offering a more reliable 

and cost-effective solution. 

 

Conclusion 

Future research must tackle critical issues related to data quality and model generalizability. 

Generating synthetic data could strengthen the robustness of ML models in data-scarce 

environments, while federated learning approaches may enhance performance across 

diverse datasets while preserving privacy. Furthermore, integrating ML with traditional 

testing methods could provide a balanced approach, combining the strengths of both to 

offer a more reliable and cost-effective solution. In conclusion, machine learning (ML) 

techniques offer significant potential for improving coliform detection in Africa and other 

developing regions. However, addressing the associated challenges is crucial. The review 

highlights that while ML methods can greatly enhance detection accuracy and speed, their 

successful application depends on overcoming hurdles such as data quality, computational 

constraints, and model generalizability. Developing effective and scalable water quality 

monitoring systems requires integrating insights from both simulated studies and real-

world applications. This involves utilizing emerging technologies like edge computing and 

affordable sensors, and addressing practical challenges identified through simulations and 

field research. A balanced approach will be essential for advancing public health, mitigating 

the impact of waterborne diseases, and ensuring sustainable water management. 

Thoughtful application and continuous refinement of ML techniques will be vital in 

creating robust, adaptable solutions that enhance the safety and reliability of water sources, 

ultimately supporting the health and well-being of communities across Africa and beyond. 
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