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Abstract 
 

In this paper, the derivation of cumulative residual entropy which makes use of 

a probability distribution survival function for the derivation is presented. The 

entropy is derived for of a distribution introduced by Nkombou et al. (2025) 

called DUS Skew Student-t (DUSSS-t) Distribution. Specifically, the entropy 

derived is the Cumulative Residual Renyi Entropy (CRRE). The final result 

shows it is possible that other cumulative residual entropy for the DUSSS-t can 

be estimated following the same approach in this paper. 

Keywords: Transformation, Entropy, Cumulative Residual, Skew Distribution, 

Reliability Function 

 

 

INTRODUCTION 

Entropy measure was introduced by Shannon (1948) for measuring information 

uncertainty in the field of information theory. On the average, the amount of information 

required to explain a random variable, q, is a measure of entropy for that specific random 
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variable, q. It is eminent in the literature on entropy that many modification or introduction 

of entropies other than the Shannon entropy (SE) has been done. The Renyi entropy (RE) 

is one of such modification of the SE by Renyi (1961). According to Renyi (1961), entropy 

of a probability distribution (PD) is not just a measure of uncertainty but also a measure of 

the quantity of information. It is a generalization of entropies like SE, Hartley entropy, 

collision entropy, and min-entropy. The quantity of information at order z concerning a 

continuous random variable q which is gotten from the observation of an event E is 

defined as (David et al., 2024a and 2024b, Mathew et al., 2024, Eghwerido et al., 2020, and 

Nkombou et al., 2025): 
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where, 𝐸𝑧(𝛼) = ∫ 𝑓(𝑞, 𝛼)𝑧𝑑𝑞
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 and z > 0, z ≠ 0 and  𝑓(𝑞, 𝛼) is the Probability Density 

Function,  PDF, of a specified distribution. 

The RE has some drawbacks which includes estimated RE being negative, not having 

the required properties of information measure, and other limitations. These shortcomings 

have led researchers to develop an alternative to RE by generalizing the RE through the 

substitution of the PDF in RE with the survival function (SF) of the distribution. Rao et al. 

(2004) started this generalization when they proposed the generalized version of Shannon's 

entropy. Zardasht (2022) defined the Cumulative Residual RE (CRRE) of order z (and its 

dynamic version, DCRRE, by extending it to the residual lifetime variable) as follows:  
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where, 𝐷𝑧(𝛼) = ∫ 𝑆(𝑞, 𝛼)𝑧𝑑𝑞
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 and 𝑆(𝑞, 𝛼) is the SF of a specified distribution. 

Derivation of the CRRE for different existing PDs is not new and can be seen in the work 

of AI-Babtain et al. (2021) and lots more. 

 

METHODS 

This section presents the theoretical derivation of CRRE for a modified Skew Student-t 

(SS-t) distribution through DUS transformation. 
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CRRE Derivation for DUSSS-t Distribution 

Let q be an independent and identically distributed (i.i.d.) random variable, r.v. The r.v. q is 

said to follow a DUSSS-t distribution if it has a SF given as (Nkombou, 2025); 
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Lemma: The CRRE for a DUSSSt distribution is given as: 
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RESULTS 

Proof: By definition, the CRRE measure is given as: 
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with, 𝐷𝑧(𝛼) given by Equation (4), the survival function of the DUSSS-t distribution is 

given by Equation (3). The derivation of 𝐷𝑧(𝛼) is given as: 
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Based on the concept of Taboga (2017) then, 
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where, 𝑓(𝑞, 𝛼) is considered as the PDF of a given probability distribution.  
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By substitution into Equation (4), the integral part of the expression of 𝐷𝑧(𝛼) is expressed 

as: 
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Using the Gamma function expression given as: 
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Therefore substituting 𝐷𝑧(𝛼) into Equation (3), the CRE of the DUSSS-t distribution is 

obtained and given as: 
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CONCLUSION 

In this article, the derivation of CRRE for DUSSS-t distribution has been theoretically 

presented. It is obvious that other measures of cumulative residual entropies can be derived 
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for the DUSSS-t distribution and in the future this will be explored for entropies like Tsalis, 

Arimoto, etc., by the researchers. 
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