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Abstract

This article aims to present and establish some fixed-point results for a
mapping satisfying generalized Lipschitz conditions and appealing to the
normality of the cone. Our results extend and generalize several known results

from the existing literature.
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INTRODUCTION

The Banach contraction theory was established in 1922 by Banach S. This theory is also
referred to as the Banach fixed point theorem. Most recentlyThe idea of cone metric
spaces, which is an extension of metric spaces, was introduced by Huang and Zhang in

2007. In this concept, the real numbers are replaced by a Banach space that is ordered.

Volume 2, Issue 3, June 2024; 334-351

https://ejournal.vasin-alsys.org/index.php /AJSTEA
(), AJSTEA Journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License



https://ejournal.yasin-alsys.org/index.php/AJSTEA
https://doi.org/10.58578/AJSTEA.v2i3.2858

Gajendra Kumar Behera

They proved some fixed point theorems of contractive mappings on cone metric spaces
under the assumption that cones are normal. The findings of Huang and Zhang's research
in 2007 were expanded upon by Rezapour and Halmbarani in 2008 by removing the
assumption of normality in the cone. As a result, several researchers have extended the
outcomes of Huang and Zhang's study and have looked into fixed and common fixed

point theorems for both normal and non-normal cones.

A few years ago, Liu and Xu (2013) proved some fixed point theorems for generalized
Lipschitz maps in cone metric spaces, under weaker and more natural conditions.

In 2014, Shaoyuan Xu and S. Radenovic improved and generalized the results of Liu,H.
and Xu,S.(2013),and obtained some fixed point results for generalized Lipchitz mapping

in cone metric spaces over Banach algebras without the assumption of normality.

Huaping, H.and S. Radenovic (2015) obtained some common fixed point theorems in same
space. In 2016, Qi Yan et al. , obtained some fixed point and common fixed point results
of comparable maps satisfying certain contractive conditions on partially ordered cone

metric spaces over Banach algebras.

In 2018, Cho S-H established a new fixed point theorem and presented an example. In the
same year, Yan H. Shaoyuan and Xu obtained fixed point and common fixed point results
for generalized Lipschitz conditions on c-distance without relying on continuity. Huaping
H. et al. conducted research in 2015 on c-distance for generalized Lipschitz conditions on
cone metric spaces with Banach algebras and proved a common fixed point. In 2017,
Ahmad A. et al. improved an analog of Banach and Kannan fixed point theorems by
extending the Lipschitz constant in generalized Lipschitz mapping Banach algebra. Their
work was a response to the open problems proposed by Sastry et al. (2012) in cone metric

spaces.

The purpose of this manuscript, we establish and generalize, extend and improve some

important results in the literature of Liu, H. (2013), Xu, S. (2016), and Wang, J. (2016).
PRELIMINARY NOTES

We will review some basic concepts and definitions from Huang and Zhang (2007), and
Liu,H. and Xu,S.(2013), as follows:

Let A be a real Banach algebra an operation of multiplication is defined sbject to the

following properties(for all x,y,z € A, € R):
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@ )z =x(yz);
2) x(y+z)=xy+xzand (x +y)z = xz + yz;
G alxy) = (ax)y = x(ay);
@ Iyl < xlliiyl
An algebra A with unit element e, unital algebra, i.e. multiplicative identity e such that ex =
xe = x for all x € A. An element x € A is said to be invertible if there is an inverse
clement y € A such that xy = yx = e. the inverse of x is denoted by x1.
The following proposition is well-known (see[Liu,H. and Xu, S.(2013),and Rudin W.
(1991),).
Proposition 1: Let A be a real Banach algebra with unit e and x € A. If the spectral radius
r(x) of x is less thanl, that is,
r(x) = lim [|x™||7 = infllx"||/» < 1, then
n—oo n>1
e — x isinvertible. e.t.
(e—x) = N2t
Ifr(x) < 1, then ||x™|| = 0(n = ). Because 7(x) denotes the spectral radius of x € A.
Now, let us recall of cone and partial ordering for a Banach algebra A. A subset P of A is
called a cone of A if,
6 P is non empty closed and {0, e} € P,where 0 denotes the zero element of 4;
(ii) aP + [P € P for all non negative real numbers «, f;
iy P?=PP c P;
(ivy, Pn(—=P)={6}.
Given a cone P C E, we define a partial ordering < on E with respect to P by x < y if and
only if y — x € P.We shall write x < y if y — x € intP(where int P denotes the interior
of P). If intP # @, then cone P is solid.
The cone P called normal if there is a number K > 0 such that forall x,y € E,
0<x<y=>xII<KIlyl.

The least positive number satisfying the above is called the normal constant of P.

Definition: 2 (see [Huang and Zhang (2007) and Liu,H. and Xu, S.(2013)]): Let X be
a non-empty set. Let A be Banach algebra and P € A be a cone. Suppose the mapping
d: X X X — A satisfies
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(i) 0<d(x,y)forallx,y € Xand (x,y) = Oifand onlyifx =y,

(i) d(x,y) =d(y,x)foralx,y € X,

(i) d(x,y) <d(x,z)+d(z,y)forallx,y,z € X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space over a Banach
algebra .

We present some examples in the following:

Example 3:1etA = {a = (aij)33:aij € ]R, 1< l,] < 3} and
1
lall =3 Yisjjes]aij]-
Take a cone P={a €A4:a;; 20,1 <1(,j<3}in Alet X = (1,2,3}. Define a mapping
d:XxX — Abyd(1,1) =d(3,3) = (0)33 and

224
d(1,2) =d(2,1) = <3 4 3>,
253

546
d(3,1) =d(1,3) = <6 7 5),
564

45,6
d(2,3) =d(3,2) = (5 7 ,6).
7,75

Then (X, d) is a cone metric space over Banach algebra.

Definition: 4 [Huang and Zhang (2007) and Liu,H. and Xu, S.(2013),]: Let (X, d) be
a cone metric space over a Banach algebra A ,x € X and {Xx,},>1 be a sequence in X.
Then
1) {xn}n=1 Converges to x whenever for everyc € E with 8 < c,there is a

natural number N such thatd (x,, x) < ¢ for alln = N. We denote this by

lim, x, xo0rx, > x,(n > ©
2 {xn}ns1 is said to be a Cauchy sequence if for every ¢ € A with << c,if

there is a natural number N such that foralln,m > N, d(xn' xm) K c;
3 (X,d) is said to be a complete cone metric space over Banach algebra if

every Cauchy sequence in X is convergent in X.
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Lemma 5(see [Rudin,W.(1991),]): Let A be Banach algebra with a unit eIf x,y € A
and x commute with y, then
r(x +y) <r(x) +r(y) and

rixy) <r()r).
Lemma 6 (see [Rudin W.(1991)]): Let A be a Banach algebra with a unit e and k be a
vector in A. If 0 < r(k) < 1, then we have

r(e—k)™MH<@-rl)N™
Definition 7: Let (X,d) be a cone metric space over a Banach algebra A and P be a
normal cone with a normal constant K. Then a mapping S: X — X is called generalized
Lipschitz mapping if there exists a vector k € P with k < e and for all x,y € X,we have

d(Sx,Sy) < kd(x,y)

Lemma 8: Suppose P is normal cone with constant K in (X, d) with Banach algebra A. If
x <y, thenr(x) < r(y).
Proof: Let (X, d) be a cone metric space over a Banach algebra A and let P be a normal
cone with a normal constant K such that x <y means x™ < y™, then we have prove to

prove that 7(x) < 7r(y) . Since x <y means x™ < y™ . So, by definition of normality

Y
™l < Klly™ . This implies||x™||/n < K'/n ||y1/n|| "

Thus

r(x)

i [l < 1im i [y ]|
n—»oo n—oo

Y
. 1 n
lim ”y /n” =r(y).
n—-oo

Lemma 9: Let (X,d) be a cone metric space over a Banach algebra A and let P be a

normal cone with a normal constant K. Let X,k € P holdx < kx. If r(k) < 1, then x =

0.

Proof: Sincer(k) < 1. So, r(k) = lim ||k”||1/" < 1, then there exists @ > 0, such that
n—00

1
lim ||k”||1/n < a < 1.letting n be big enough, we get ||[k"||» < a je. [|k*] <a™ >
n—-oo

0(n = ). Thus ||k™|| = 0(n = ). Note that by definition of normality of P and x <
kx < k?x < -+ ........ < k™x, it follows that

x| < K|[k™|| |[x]| = 0(n = o), This implies x = 0
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RESULTS

Theorem 10: Let (X, d)be a complete cone metric spaces over Banach algebra A, P be a
normal cone with a normal constantK. Suppose the mapping S:X — X satisfies the
generalized Lipschitze conditions
d(Sx,Sy) < 41d(x,y) + 2,d(Sx,x) + 13q(Sy, y)+2,d(Sx,y) ......... (10.1)
for all x,y € X, where A; € P(i =1,2,3,........) are generalized Lipschitz constants
with 7(A; + A,) + (A4 + 43 + 4,) < 1. If 1, + A, commutes with A; + 13 + 4, then
S has a unique fixed point in X. And for any x, € X, iterative sequence {S™x} converges
to the fixed point.
Proof: Let x is an arbitrary point in X and set x,, = Sxp,_1 = S™xg, n = 1.
Putx = x, and y = x,,_¢ from (10.1), we have
d(Xn+1,%n) < A(SXn,SXn_1)
< 4 d(p, Xp—1) + 2d(Sxp, X)) + A3d(Sxp—1, Xn—1)
+4d(Sxp, Xp—1)
< Ad(xn, Xp-1) + Ad (Xp41, X5) + A3d (X, Xp—1)
+4d (Xp41, Xn-1)
< Ad(xn, Xp-1) + Ad (Xp41, Xp) + A3d (X, Xp—1)
+A4[d (X1, %n) + d(xp, Xn41)]
< (A + A3 + A)d (-1, x0) + (A2 + A)d (X, Xp41)
This means that
(e — A2 — ) d(Xn41, Xp) = (A1 + A3 + A)d (xp—1, %) (10.2)
Since 7(A; + 44) < 1(A; + 44) + (41 + A3 + 4,) < 1, then by proposition 1
(e — A, — A,) is invertible. Furthermore,
(=2 —A)™ =314, + A" ... (10.3)
Put h= (e — A, — ) L. (A4 + A3 + A). As A, + A, commutes with A; + A3 + A4, it
follows that
(6= =)™ (h + A+ 4) = (ZiZo(z + 20)") (h + 45 + 4)
= (4 + 23+ )Tz + 10)Y)
A+ A3+ 4)(e—2A, —A) L ... (10.4)
That is (e —Ay; — A4)™1 commutes with (1; + A3 + A,). Then by Lemma 2.6 and

Lemma 6, we obtain

Volume 2, Issue 3, June 2024 339
- — " |



Gajendra Kumar Behera

r(h) = r[(e =2, — 27" (A4 + 23 + A,)]
(e — A3 — A) 7. 7(A + A5 + 1)
S M=@A+ )T (A + 23+ 1)

AN

-1
= Ty T+ + Ag)

<1
Which illustrates that (e — h)™* = Y72 ,(h)" and ||h"|| > 0(n — ). Thus for, we get
d(Xpe1,%n) S (€ =2 — )75 (A4 + A3 + Ay) d (X, Xp—q)

= h d(xnr xn—l)S hzd(xn—lr xn—z) Sl S hnd(xo;xl)

Now, Let m > n = 1. then it follows that

d(xp, Xm) < d(xn,xnﬂ) + d(xn+1,xn+2) +o +d (Xm—-1%Xm)
S (A" + ™ 4 R (g 1)
S (e + h + h'l’l+1 + S0 e wer we wa e + hm_n_l)d(xo'xl)

< % d(xojxl)
< (e —h)™*h™ d(xx;) (10.5)
Since P is normal with normal constantK and note that [|A"| — 0(n — ), we have
1dGen, 2l < K[| Ce = h)~ A" (02,
<KTll(e — B~ Il 1A |d (o x1)]| = 0(n = o).
Hence {x,} is a Cauchy sequence inX. Since X is complete, there exists u € X such that
Xy = u(n = ). To verifySu = u, we have

d(Su,u) < d(Su,Sx,) + d(Sx,,u)
< Adu, xy,) + ,d(Su,u) + A3d(Sxy, xp,) +A,d(Su, x) + d (X441 U)
< Adu, xy,) + Ad(Su, u) + A3d (X401, X)) +A,d(Su, x) + d (X401 1)
< hd(u,xp,) + 2,d(Su,u) + A3[d(w, x) + d(xp410)
+A4[d(w, x) + d(Su, )] + d(xn41,u)]
Implies that (e — A, — A)d(Su,u) < (A1 + A3 + A,)d(u, x,) + (1+A3)d (X p41,u)
Note that, (e — A, — A,) is invertible, then by the normality of, we have
ldSu, Wl < K[{lle = (A2 + 21372 + A5 DIlld (w, x)l
+l(e + 23)llld (xn41, W= 0(n - ).
Hence, ||d(Su, u)|| = 0.This implies Su = u. So, u is a fixed point of S in X.

Now, v is another fixed point of § in X. Then
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d(u,v) < d(Su,Sv)
< A d(w,v) + A,(Su,u) + A3d(Sv,v) + 1,d(Su, v)
= (4 + ) d(u,v).
Thus [|d(u, V)| < K1[(41 + 44) || ld(w, v)]| = 0(n — ).
Then d(u,v) =0, which implies that u = v. Therefore, U is an unique fixed point of S
in X. This theorem is proved.
Theorem 11: Let (X, d)be a complete cone metric spaces over Banach algebra A, P be a
normal cone with a normal constantK. Suppose the mapping S:X — X satisfies the
generalized Lipschitze conditions
d(Sx,Sy) < 4d(x,y) + 2,d(Sx,x) + A3d(Sy, x)
+,d(Sx,y) +A5d(Sy,y).... (11.1)
for all x,y €X, where A; € P(i =1,2,3,4) are generalized Lipschitz constants
with (A, + A,) + (A4 + 243 + A4, + 15) < 1. If A, + A4, commutes with Ay + A3 + 4,
, then fixed point S is unique in X. And for any Xy € X, iterative sequence {S™x}
converges to the fixed point.
Proof: Let x( is an arbitrary point in X and setx,, = Sx,_; = S$™xy, n = 1.Put x = x,
and y = xp,_1 from (3.1.1), we have
A (s, %) < d(S% Sn_1)
< A d(xp, Xp—q) + A,d(Sx, X) + A3d (Sxp—1, X)) A4 d (SXp, Xp—1)
+ Asd(SXp-1,Xn-1)
< L d(Xn Xno1) + 22d (Xng1, Xn) + A3[d (o, Xn21) + A1, X)) ]
+24[d (xp_1, %) + d (X, Xpg )]+ Asd (0, X521)
S (A + 223 + A4 + A5)d (X1, x0) + (A2 + A4)d (X, Xp41)
This means that
(=2 —A) d(Xpp1,xn) < (AW + 243 + A4+ A5)d (X1, %) o enen .. (11.2)
Since 7(A; +44) < r(A; + A) +1r(A; + 223 + A4, + A5) < 1, then by proposition 1,
(e — A, — A,) is invertible. Furthermore,
(e—2 —A) 1 =372 0(A + A" ... (11.3)
Taking h= (e — Ay —Ay) "1 (A1 + 245 + A, + A5). As A, + A, commutes with A; +
23 + A4 + A5 it follows that
(=2 =) L (M + 203 + Ay + 25) = (Bizo(Az + A)Y) (Mg + 225 + A4 + As)
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= ML +20:+2, + /15)(2;10(/12 + /14)i)
= M +204+ 2, +25) (e =2, — )™
That is (e — Ay — A4)™ ! commutes with (1; + 243 + A4 + A5). Then by Lemma 6 and
Lemma 7, we obtain
r(h) = r[(e—2, —A) " L.(A4; + 245 + A4 + A5)]
Srlle—=A; =AD" r(A + 245 + A4 + A5)
< -+ A1 Hr(Ay + 223 + A4 + A5)

_ 1
= —1—(12+/14) .T(Al + 213 + A4 + As)

<1
Which illustrates that (e — h)™* = Y72 ,(h)* and ||h"|| > 0(n — ). Thus for, we get
d(Xns1, %) S (€ = Ap — A) ™1 (44 + 245 + A4 + A5) d(xp, Xp—1)
= hd(xy, Xp_1)< h2d(xXp_1, Xp_3) < =+ . < R (%0, X1)

Now, Let m > n = 1. then it follows that

d(xp, Xm) = d(xn,xnﬂ) + d(xn+1,xn+2) Fon +d (Xm-1%Xm)
S (hn + th+1 + C e e owes we wa + hm_l)d(xO'xl)
<(e+h+h™ 4 AT DA (X %)

< % d(xolxl)
< (e —h)"*h™ d(xpx;) (11.4)
Since P is normal with normal constant K, and note that ||h"|] = 0(n — o), we have
ld (G, X1l < K[| (e = )™ d (20,2, )|
<K[lIte = )M |d (x0,21)[|] = 0(n = ).
Hence {x,} is a Cauchy sequence inX. Since X is complete, there exists u € X such that
Xy = u(n = ). To verifySu = u, we have

d(Su,u) < d(Su,Sx,) + d(Sx,,u)
<A d(u,x,,) + ,d(Su,u) + A3d(Sx,, u)+A,d(Su, x,,) +Asd(Sx,, x;,)

+d(Xpe1,u)
< Ld,xy,,) + ,d(Su,u) + A3d (g, u) +A,d(Su, x) + d(Xp 41 Xn)

+d(Xn41,u)
< Ldu,xy,) + A,d(Su, w)+ Azd (g, ) +A[d(u, x,) + d(Su, u)]

+As[d(u, x,) + d(xnﬂ,u)] + d(xnﬂ’u)
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Implies that,
(e =2, —2)d(Su,u) < (A + A, + A5)d(u, x) + (1+A5 + A5)d (X1, 1)
Note that,(e — A, —A,) is invertible, then by the normality of we have
ld(Su, Wl < K[{lle = (A2 + 2D + A4 + 29 1l (w, x|l
+ll(e + 23 + A5) [llld (xn41, W= 0(n - o).
Hence, ||d(Su, w)|| = 0.This implies Su = u. So, u is a fixed point of S in X.
Now, v is another fixed point of § in X. Then
d(u,v) < d(Su,Sv)
< Ld(u,v) + 2,(Su,u) + A3d(Sv,u) + 1,d(Su, v) + 15d(Sv,v)
=M+ A3+ 1) dw,v)
Thus [|d(u, V)|l < K||(A41 + A3 + 4) || lld(w,v)|| = 0(n = ©). Then d(u,v) =0,
which implies that u = v. Therefore, U is an unique fixed point of § in X.
Theorem 12: Let (X, d)be a complete cone metric spaces over Banach algebra A, P be a
normal cone with a normal constantK. Suppose the mapping S:X — X satisfies the
generalized Lipchitz conditions
d(Sx,Sy) < Aq(x,y) + Bd(Sx,x) + Cd(Sy,y)
+D[d(Sx,y) +d(Sy, x)]... (12.1)
for all x,y € X, where 4,B,C,D € P are generalized Lipschitz constants withr (B + D)
+r(A+C+ D) <1.Ifr(B + D)commutes with A+ C + D , then S has a unique fixed
point in X. And for any xy € X, iterative sequence {S™x} converges to the fixed point.
Proof: Let x is an arbitrary point in X and set x, = Sx,,_; = S"xg, n = 1.
Putx = x, and y = x,,_¢ from (12.1), we have
d(Xn+1,%n) < A(SXn,SXn_1)
< Ad(xy, Xp_1) + Bd(Sxp, xp,) + CA(Sxp_1, Xp_1)
+D[d(Sxp, Xp-1) +d(SXp_1,X5)]
< Ad(xp, xp—1) + Bd(Xp41, %5) + Cd (X, Xp—1)
+D[d(xp41, Xn-1) + d(xn, X))
< Ad(xp, Xp—1) + Bd(Xp41, %) + Cd(xy, Xn-1)
+D[d(xn, Xp-1) + d(xXp, Xp41)]
<(A+ C+D)d(xy_1,xn) + (B +D)d(x,, Xn41)
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This means that
(e =B —D)d(Xps1,%n) S (A+ C+D)d(xp_1,%5)... (12.2)
Sincer(B+ D) < r(B+ D) +1(A+ C+ D) <1, then by proposition 2.1, (e — B —
D) is invertible. Furthermore,

(e—B-D)y1=3Y2,(B+D) .. (12.3)
Puth= (e —B—D)"1.(A+ C+ D). As B + Dcommutes with A+ C + D it follows
that
(e—B—-D)L(A+C+D)= (TZo(B+D))(A+C+D)
(A+C+D)(XZo(B + D))
(A+C+D)(e—B—-D)™L.
That is (e — B — D)™ commutes with (A 4+ C 4+ D). Then by Lemma.6 and Lemma 7

that, we obtain
r(h) = r[(e—B—-D)"1.(A+C+ D)]
<r[(e—B-D)1'.r(A+C+D)
< M1-@B+D)]Lr(A+C+D)

_ 1
= 1—(B+D)'r(A +C+D)

<1

Which illustrates that (e — h)™! = Y72 ,(h)" and ||R"|| > 0(n — ). Thus for, we get
d(Xps1, %) < (e—B—=D)"L.(A+ C+ D) d(xp, Xpn_1)
= hd(xn, xn-1)
< h?d(xp—1, Xn—2)
< .S hMd(xg, %)

Now, Let m > n = 1. then it follows that

d(xy xpm) < d(xn,xnﬂ) + d(xn+1,xn+2) +o +d(Xpm—1%Xm)
S (hn + hn+1 + + hm_l)d(xO’xl)
<(e+h+h™ 4 AT DA (0 xy)

hn
S E d(xojxl)
<(e—h)"th" d(xx1)...... (12.4)
Since P is normal with normal constantK and note that ||h"|] — 0(n — ), we have

lld G )| < K[| (e — h)™2R™ d(x0.21) ||
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<K[lle = W)~ IR™I [|d (x0.x1)[]] = O(n = <.
Hence {x,} is a Cauchy sequence in X. Since X is complete, there exists x* € X such that
Xp = x"(n = ), to verify Sx* = x*, we have
d(Sx™,x™) < d(Sx*,Sx,) + d(Sx,, x*)

<Ad(x*,x,) + Bd(Sx*,x*) + Cd(Sx,, x*)

+D[d(Sx™, xp,) +d(Sxp, x*) +d(xp41 1)

<Ad(x*,x,,)+Bd(Sx*,x*) + Cd(xp41,x")

+D[d(Sx™, x™) + d(x", x,) + d(Xp1x™] + d (X1 x™)
Implies that,
(e =B —=D)d(Sx*,x*) <(A+D)d(x*,x,) + 1+C + D)d(xp41,x")
Note that, (e — B — D) is invertible, then by the normality of , we have
Id(Sx*, x)Il < K[{lle — (B + DI} ICA + D)llld (x™, %)l
+ll(e + C + D)llld (xn+1, )] 0(n - ).
Hence, ||d(Sx*, x*)|| = 0.This implies Sx* = x*. So, x* is a fixed point of S in X.
Now, ¥ is another fixed point of S in X.
Then
d(x*,y*) < d(Sx*,Sy")
< Ad(x*,y*) + B(Sx*,x*) + Cd(Sy*,y") + d[d(Sx",y") + d(Sy*, x")]
=@A+2D)d(x",y")
Implies that (e — A — 2D) d(x*,y") < 0.Now, by normality of P
Thus [ld(x*, y)Il < K|[(A + 2D) || lld(x*, y )l = 0(n = o0). =>[|d(x*,y)|| = 0
Implies that, (x*,y*) =0 = 3> x* = y*. Thusx” is an unique fixed point of S in X. This
theorem is proved.
Theorem 13: Let (X, d)be a complete cone metric spaces over Banach algebra A, P be
a normal cone with a normal constantK. Suppose the mapping S:X — X satisfies the
generalized Lipschitze conditions
d(Sx,Sy) < Ad(x,y) + B[d(Sx,x) + d(Sy,y)]
+C[d(Sx,y) +d(Sy,x)].... (13.1)

for all x,y € X, where A,B,C,€ P are generalized Lipschitz constants with (B + C)
+r(A+ B+ C)<1.Ifr(B+ D)commutes withA + B + C , then S kept a unique fixed

point in X. And for any x, € X, iterative sequence {S™x} converges to the fixed point.
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Proof: Let x is an arbitrary point in X and setx, = Sx,_; = S"xy,n = 1.
Putx = x, and y = x,,_¢ from (3.4.1), we have
d (X1, ) < A(SX, S_1)
< Ad(xp, Xp—1) + B[d(Sxy, x7) + (SXp-1, Xn-1)]
+C[A(Sxp, Xp—1) +d(Sxp_1, %))
< Ad(xp, Xp—1) + Bld(Xp41, %0) + A3d (xp, Xp—1)]
+D[d(xn41, Xn-1) + d(xn, x5)]
< Ad(xp, Xp—1) + Bld(Xp41, %0) + d(p, Xp-1)]
+C[d(xp, Xp-1) + d(xn, Xn41)]
<A+ B+ C)d(xp_1,x,) + (B+CO)d(xp, xpns1)
This means that
(e—=B—-0C)d(xps1, %) < (A+ B+ C)d(xp_1,xp) (13.2)
Since 7(B+C) < r(B+C) +r(A+ B +C) < 1, then by proposition 2.1, (e — B —
C) is invertible. Furthermore,
(e—B—-C)1=32,B+C) (13.3)
Puth= (e—B—C)"Y.(A+ B +C). As B+ Dcommutes with A+ B + C it follows
that
(e—B-C)L(A+B+0)= (T2,B+0)")(A+B+0)
= (A+B+0)(Z2,(B+0))
=(A+B+0)(e—-B-0O)"L
That is (e — B — €)™ commutes with (A + B + C). Then by Lemma.6 and Lemma.7
that, we obtain
r(h) = r[(e—B—-C)"L.(A+ B+ ()]
<r[e-B-C)"'.r(A+B+0C)
< I-B+0OTLr(A+B+0)
1

= 1—(B+C)'r(A +B+C)

<1
Which illustrates that (e — h)™* = X2 (h) and ||h™|| = 0(n - ). Thus for, we get
d(Xps1, %) < (e—B—=D)"L.(A+C+ D) d(xp, Xpn_1)
= h d(xn:xn—l)

< hzd(xn—l' xn—z)
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< . < W™ (%0, X1)

Now, Let m > n = 1. then it follows that

d(xp, %) < d(XnXns1) + d(Xns1,Xn42) Foooornne +d (Xym_1.Xm)
S (hn + hn+1 + + hm_l)d(xolxl)
S (e + h + h'l’l+1 + S0 e wer we wa e + hm_n_l)d(xo'xl)
< E d(xo,xl)
< (e —h)"th™ d(xox;) (13.4)

Since P is normal with normal constantK ,and note that ||h™|| = 0(n — o), we have
lld G xm) Il < K[| (e = B)™"h™ d (0,21 |[]
< K[llte = )7 I 1AM [|d (xo 1)1 = 0(n — o).
Hence {x,} is a Cauchy sequence inX. Since X is complete, there exists x* € X such that
Xp = x"(n = ). To verifySx™ = x*, we have
d(Sx*,x™) < d(Sx*,Sx,) + d(Sx,, x*)
< Ad(x",x,) + B[d(Sx*,x*) + d(Sxp, x™)]
+C[d(Sx™, xp,) +d(Sxp, x™)] +d(xp1U).
<Ad(x*,x,,) + B[d(Sx™,x*) + d(xp41,x7)]
+C[d(Sx™, x*) + d(x", x,) + d(Xp41.x"] + d(xXp11x™)
Implies that,
(e=B—=0C)d(Sx",x") < (A+C)d(x",x,) + 1+B + C)d(xpy1,x")
Note that,(e =B —C) is invertible, then by the normality of, we have
ld(Sx*, x)Il < K[{lle — (B + O} HI(A+ D)Illd(x", x,)
+ll(e + B + Olllld(xp+1, x7)[[]= 0(n = o).
Hence, ||d(Sx*,x*)|| = 0.This implies Sx* = x*. So, x* is a fixed point of S in X.
Now, ¥* is another fixed point of § in X. Then
d(x*,y*) < d(Sx*,Sy")
< Ad(x*,y*) + B[(Sx*,x*) + d(Sy*,y")]
+C[d(Sx*,y*) + d(Sy*, x")]
= (A+20)dx",y").
Implies that (e — A — 2C) d(x*,¥") < 0.Now, by normality of P
Thus [ld(x", y)Il < K|[(A + 20| |d(x", y*)I| = 0(n — ).
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=s/ld(x", y")Il = 0
Implies that, (x*,y*) = 0 = > x* = y*. Thus x* is an unique fixed point of S in X. This
theorem is proved.
Theorem 14: Let (X, d)be a complete cone metric spaces over Banach algebra A, P be a
normal cone with a normal constantK. Suppose the mapping S:X — X satisfies the
generalized Lipschitze conditions
d(Sx,Sy) < a;d(x,y) + a,[d(x,Sx) + d(y, Sy)]+ az[d(x,Sy) + d(y, Sx)]
+ a,ld(x,S5x) + d(x, )] + as[d(y,Sy) + d(x,y)]... (14.1)
for all x,y € X, where aq,a,, as, ay, as are generalized Lipschitz constants with r(a, +
az +as) +r(ay+a,+az+2a,+as) <Ll (a,+az+ as)commutes witha, +
a, + az + 2a, + as , then S has a unique fixed point in X. And for any xy € X, iterative
sequence {S™x} converges to the fixed point.
Proof: Choose xg € X. Set x; = Sxq, X3 = Sx; = S%X( v oo X1 = SXp = S™xg
Then we have,
d(xXp, Xpe1) < d(Sxp-_15x,) ... (14.2)
< a1d(Xp—1, %n) + ax[d(Xp—q, Txn_1) + dq(xy, Txy)]
+ az[d(xn_1, Txp) + d(xn, Txp—1)
tay[d(xn—1, Txp-1) + d(xp_1, %)
+ as[q(xn, Txy) + q(xp, x0))
= a1d(Xn-1, Xn) + az[d(Xp-1, X5) + d (X, Xn11)]
+az[d(xn-1,Xn+1) + d(xn, Xp)]
+ ay[d(xXp—1, %) + d(xn-1, %5)]
+ as[d(xXp, Xn41) + dCen_1, X5)]
d(Xp, Xpe1) < (a1 +ay + az + 2a4 + as)d(x,—1, Xp)
+(az + az + as)q(xXy, Xn+1)
Which means that
(e —az —az — as)d(xp, Xny1) < (a1 + az + az + 2a4 + as)d(x,_1, X5)
Since r(a; +as +as) +r(a; +a, +as + 2a, +as) <1, then by proposition 2.1,
(e —a, — az — as) is invertible. Furthermore,

(e—a,—az;—ag) ' =Y",(e—ay—as—as) ..........(3.5.3)
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Puth = (e —ay, —az; —as) *.(a; + a; + az + 2a, + as).As(a, + a; +
as)ccommutes witha; + a, + az + 2a4 + as it follows that
(e—ay,—as;—as) ™ .(a; +a, +as +2a, + as)

= (Xole—a, —as —as)') (a, + a; + as + 2a, + as).

= ((ay +ay +az +2a, +as).)(Tzole — a, —as — as)?)

= (a;+ay,+az+2a,+as)(e—a, —az;—ag) L.
That is (e —a, —az —ag)~ . commutes with (a; + a, + asz + 2a, + ag). Then by
Lemma 2.6 and Lemma 2.7 that, we obtain

r(h) = r[(e—ay,—as;—as) ™ .(a; +a, + az + 2a, + as)]
<r[(e—a,—az—as)' ]. r(a; +a, +as+2a, +as)

< [M=(ay+az+as)] tr(a; +a, +as+2a, +as)

_ 1
1—(a2 +a3+a5)

r(a; +a,+az+2a, +as)
<1
Which illustrates that (e — h)™ = Y72 ,(h)! and ||A™]| = 0(n — ). Thus for, we get
d(Xns1,Xn) < (6 —az —az —as)™'.(ay + az + az + 2a, + as) d(xp, Xp_1)
= hd(xn, Xp-1)< h*d (Xp_1, Xn_2)
< e SR (xg, xq). (14.3)
Let m > n = 1. Then it follows that

Now, Let m > n = 1. then it follows that

d(xy xp) < d(xn,xnﬂ) + d(xn+1,xn+2) +o +d (Xpm—1%Xm)
S (W™ 4+ R 4 e BT DA (g X))
<(e+h+h™ 4 F R DA (X %)

< % d(x0x;)
<(e—Rh)*h" d(xgxy)...... (14.4)
Since P is normal with normal constantK and note that [|A"| — 0(n — ), we have
lld (n, XDl < K[| (e = R)™*R™ d (20,21 ]
<K[lite = )Ml k™I ]|d (x0,x1)[[] = O(n — ).
Hence {x,} is a Cauchy sequence inX. Since X is complete, there exists ¥ € X such that
Xp = v(n = ). To verifySv = v we have

Then we have
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d(Sv,v) <d(Sx,, Sv) + d(Sx,, v)
< a1 d(x,, v) + ay[d(x,, Sx,) + d(v,Sv)] +as[d(x,, Sv) +d(v,Sx,) |
+ ag[d(xy, Sxp) + d(xn, V)] +as[(v, Sv) + d(xn, V)] +d (Xp41,u),
<a;d(w, x,) + ay[d(x,, Xpeq) + d(v, SV)]
+asz[ d(v,Sv) + d(v, x,) + d(V, X41)]
+ ag[d(Xy, Xp41) + d(v, xp)]+as[d (v, Sv) + d(xn, V)] +d(Xniq,0),
This implies that,
(e —a; —as —as)d(Sv,v) < (a; + az + a, + as)d(x,, v)
+(ag + a)d (X, Xpe1) + (1 + az)d(xny1,v)
Note that, (e —a, —az —as) is invertible, then by the normality of cone, we have
ld(Sv, Il < K[{lle = (az + az + as) 1} llay + as + a4 + as)l||dd (xn, v)||
+1(Caz + @) [1dCen xnsll + e + a)ll]|d Gnan W[1= 01 - .
Hence, ||d(Sv, v)|| = 0.This implies Sv = v. So, v is a fixed point of S in X.
Next we prove that the uniqueness of the fixed point. Suppose that, there is another fixed
point of w of §, and then we have
d(v,w) <d(Sv,Sw)
< a;d(v,w) + a,[d(v,Sv) + d(w,Sw) + as[d(v,Sw) + d(w,Sv)]
+ ay4[d(v, Sv) + d(v, w)]+ as[d(w, Sw) + d(v, w)]
=(aq + 2a3 + a, + as)d(v,w).

< (g +a;+2a;+a,+as)d(v,w). ... (14.6)
Since r(a, + az + as) +r (a; + a; + az + 2a4 + as) < 1, then by normality of P.
Thus ldCx™, y DIl < K|l (a1 + az + 2a5 + a, + as)|| |[d(v,w)|| = 0(n - ).
=>[[d(v,w)|| =0

Implies that, (v,w) =0 = v =w. Thusvis an unique fixed point of S in X. This

theorem is proved.
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