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Abstract

The concept of fuzzy sets was introduced by Zadeh (1965) which marked the
beginning of the evolution of fuzzy mathematics. The introduction of
uncertainty in the theory of sets in a non-probabilistic manner opened up new
possibilities for research in this field. Since then, many authors have explored
the theory of fuzzy sets and its applications, leading to successful
advancements in various fields such as mathematical programming, model
theory, engineering sciences, image processing, and control theory. In this
paper, we aim to improve and generalize some common fixed point theorems
in fuzzy cone metric spaces, which is an extension of the well-known results
given by Saif Ur Rahman and Hong Xu-Li (25017).
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INTRODUCTION

In 2007, Huang and Zhang proposed the concept of cone metric spaces, which involves
substituting a real number with a Banach space. They also established some fixed point
theorems for contractive mapping. Since then, numerous studies have focused on the

issues related to cone metric spaces.

The fuzzy set theory was introduced by Zadeh (1965) there has been a great effort to
obtain fuzzy analogues of classical theories. In 1970, Kramosil and Michalek, introduced
the fuzzy metric spaces. Later on, George and Veeramani (1994) gave a stronger form of
metric fuzziness. Some fixed point results for set valued mappings on fuzzy metric spaces
were found in [M. Grabiec(1988), Sadeghi (1960), Hadzic and Pap, E. (2002), and Kiani
and Harad(2011)].

In 2015, Oner etal. Introduced the notation of fuzzy cone metric space, which is a
generalization of the notation of fuzzy metric space by George and Veeramani (1994).

They also presented some structural properties of fuzzy cone metric spaces and proved a
fixed point theorem under a fuzzy cone contractive condition. Some fixed point theorems
and common fixed point theorems concerning fuzzy cone metric spaces were obtained by
Ali & kanna (2017) & Priyobatra et al. (20106) also obtained some more properties in fuzzy

cone metric spaces of results ([Oner, T, (20106)]).

In this article, we generalize and improve the results of Saif Ur, Rehman (2017) and

obtain common fixed point theorem in fuzzy cone metric space for contractive condition.

PRELIMINARY NOTES

Definition 1 ([Schweizer, A. and Sklar, (2020)]): A binary operation *: [0,1] X [0,1] —

[0,1] is called a continuous t-norm if it satisfies the following conditions:

1 * 1S commutative and associative
(2) * {s continuous
(3) 1xa=aforalla€[0,1]

“ axb < cx*d,whenevera < cand b < d, foreach a,b,c,d € [0,1].
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Definition 2 ([George and Veeramani (1994) 4]):A fuzzy metric space is an ordered
triple (X, M,*) such that X is a non- empty set, * is continuous t-norm and M is a fuzzy set
on X X X X (0, o) satisfying the following conditions, for all x,y,z € X,s,t > 0

(@) M(x,y,t) >0

(i) M(x,y,t) = 1liffx =y

(iii) M(x,y,t) = M(y,x,t)

(iv) M(x,y,t) * M(y,z,5) < M(x,z,t +s)

(v) M(x,y,.): (0,00) = [0,1] is continuous.

Definition 3 ([Huang and Zhang(2007)]): A subset P of E is called a cone if

@) P is closed, nonempty, and P # {60}
(b) Ifa,b € [0,00] and x,y € P, then ax + by € P

(©) If bothx € Pand —x € P, then =0 .

For a given cone P C E, a partial ordering < on E via P is defined by x < y if and only if

Yy —Xx € P.x <y stands for x < y andx # Yy, while x < y stand for y — x € int(p).

Definition 4 ([Oner, T .et al. (2015)]): A fuzzy cone metric space is a 3-tuple (X, M,*)
such that P is a cone ofE X is a nonempty set, * is a continuous t-norm and M is a fuzzy
set on X2 X int(P). Satisfying the following conditions, for all x,y,z € X and t,s €
int(P) (thatist > 0,s > 0)

1. M(x,y,t) >0

2. M(x,y,t)=1iffx=y

3. M(x,y,t)=M(y,x,t)

4. M(x,y,t) *M(y,z,s) < M(x,z,t +5)
5. M(x,y,.):int(p) - [0,1] is continuous.

Definition 5 ([Oner, T .et al. (2015)]): Let (X, M,*) be a fuzzy cone metric space, X €

X and {x,} be a sequence in X. Then,

1) {x,,} is said to converge to x if for t » ¥ and <€ (0,1), there exist a natural
number nysuch that M (x,, x,t) > 1— for alln > n;. It is denoted as

lim x, = x;
n—-0oo
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2 {xn} is said to Cauchy sequence if for € (0,1) and t > ¥, there exists natural
number ny € N such that M (xp, X, t) > 1— for alln,m > ny;
3) (X, M ,*) is said to be complete fuzzy cone metric space if every Cauchy

sequence is convergent in X;

4 {xn} is said to be fuzzy cone contractive if there exists €€ (0,1) such that
1 1
—_— 1 < {—————-1 eN.
M(Xp41,Xn4+2.t) = (M(xn,xn+1,t) )fOT allt > 9,n

Definition 6 ([Saif Ur Rehman and Hong-Xu Li. (2017),]). Let (X, M,*) be a fuzzy

cone metric space. The fuzzy cone metric M is triangular if

1 1 1
M(x,z,t) -1= (M(x,y,t) B 1) + (M(y,z,t) B 1)
Forallx,y,z € X and each t >> 0.

Theorem 7 [Saif Ur Rehman and Hong-Xu Li. (2017)]: Let (X, M,*) be a complete
fuzzy cone metric space in which fuzzy cone contractive sequence are Cauchy and T: X —

X be a fuzzy cone contractive mapping. Satisfies

1 1 1
() ()
M(T, T, 0  — \M®xy,0 M(x, Ty, £)
1 1
+c (M(y'w) - 1) +d (5 i 1) (7.1)
And symmetrically
L i< ( ! 1) + b( ! 1)
sa\————<— P a———
M(T,, T, t) M(x,y,t) M(x, Ty, ©)
1
e (M(Y'Ty’t) ) +d (M(x Ty.t) 1) (7.2)

For each x,y € X and t > 6 . Then T has a unique fixed point.

MAIN _RESULTS

In this section we have extend and generalize the theorem 7 and obtain common fixed

point result in fuzzy cone metric space. The main results are as follows:

Theorem 8. Let (X, M,*) be a complete fuzzy cone metric space in which fuzzy cone

contractive sequence are Cauchy and M is triangular and Ty T,: X — X be a fuzzy cone

Volume 2, Issue 2, April 2024 297
'



Surendra Kumar Tiwari & Ranu Agrawal

contractive mapping. Then, Ty and T, have a unique common fixed point, under the

following fuzzy cone contractive type conditions:

Tt e (e R R (reryrstald

+e (Wlm) - 1) +d (Wllxt) - 1) 8.1)

and symmetrically

wrn 1= (ays )+ (s )
(o5~ D+ iGass- 1) (82)
Where t » 6, a,b,c,d € [0,00] witha+ b +c <1.
Proof: Let xq € X and {X3,} and {x,,41}be any two square in X, such that
Xon = TiXon_1 =T{" Xg
and

— 2n+1
Xon+1 = ToXxon =T,

Xo

Then by equation (8.1)for t > 8,n > 1.

1 1

M(x2n,X2n+1,t) M(Tyx2n-1,ToX2n,t)

1 1
= a<M(x2n—1»x2n’ t) 1> * b(M(xZn—l'Tlen—llt) - 1>
+ (s~ U+ mmmmms )
= (s U+ G 1)
+ c(m—1)+d(m—l)
(l—c)(m—l) =a+b(m—1)

Implies that

(m B ) - (‘itf) (M(xm_ll,xmt) B 1)

Thus (m—l)sk(m—l)
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(a+b) )
<1since a+b+c<1

Wh k= <
ere (1 — C)
Implies that ;—1<k<;—1)
p M(x2n %241, t) - M( X2n—1 Xzm, t)
n(__1 _
<o < k (M(xmxbt) 1)

Which means that {x,,} is a fuzzy cone contractive sequence, and we get

lim M(x,p, Xonsq,t) = 1fort > 6 (8.3)
n—-oo
Noticing that M is triangular, then forallm > n = ny
1 1 1
(ot ) )
(x2n,X2m, t) (M( X2n, X2n41, t) M( X2n41, X2n42,t)
1
o +H———-1
<M( X2n—1, X2n t) )
< (1) e (o)
M( X0 ’,xl’ t) M( xol xl‘ t)
e ()
M( XO‘.X'L t)
< (K™ 4 k™ e kD) <; - 1)
M( X0 xl‘ t)
_ k1
o 1-k (M(.X'o,xl,t) 1) _>O asn — .

What yields that {x,} is a Cauchy sequence in X since (X, M,*) is complete.
There exists w € X such that

lim M(x,,,w,t) =1fort > 6
n—o0o

Since M is triangular, we have

1 1S(;—1)+(;—1)fort>>0

Mw,Tiwt) MW, xm,t) Mg Taw,b)
(8.4)
Now,
1 1 1
o1 (e )
M (xZn,le,t) M( X2n’T1 x2n_1, t) M( TIXZn—l, le,t)
299
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1 1
(M( xZn' .X'Zn,t) - 1)+(M( TleTl—lTlWrt) N 1)

G~ Y

1 1
< - _
=a (M(xZn—l, w t) 1) +b (M( X2n-1, T1X2n-1, t) 1)

te(-a——1)+d(;————1) >0

M( W,T1W,t) M( WrTleTl—l't)

asn —

This implies that

. 1 1
lim Sup(m—l)—lﬁC'(m—l) fort > 0 (8.5)

n—oo
Together with equation (8.4) & (8.5), we get

1

1
:>M(T1w,t)_1Sc(——1) for t > 6

MW, T,w,t)
Sincethatc < land a+b+c<1.So, M(w,Tyw,t) = 1. Thatis T,w =w
Hence w is a fixed point of Tj.

Similarly we can prove that T,w = w. Therefore,Tiw =w = Tow.

So, w is common fixed point of T; and T5.

Now, if p is another common fixed point of T; and T,. Then

s~ 1 < Gans~ D)+ (s — 1)

+e (s~ 1)+ 4 Gramms = 1)
—a (M(wl,v,t) - 1) +b (M(wl,w,t) - 1)
T (M(vl,v,t) h 1) +d (M(v?w,t) B 1)

=a+d (M(v?w,t) - 1)

Sa+d( ! 1)

Mywt)

Sincea +d < 1.8So0,we get M(v,w,t) = 1. thatisv = w.
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Thus w is the unique common fixed point of T; and T .

These completed the proof of the Theorem.

Corollary 9: Let (X, M,*) be a complete fuzzy cone metric space in which fuzzy cone
contractive sequence are Cauchy and M is triangular and T:X — X be a fuzzy cone
contractive mapping. Then, Ty and T, have a unique common fixed point, under the

following fuzzy cone contractive type conditions:
! 1<a(p 1)
—————————————————— — <S a ——— —
M(T;x, Ty, t) M(x,y,t)

Proof: - If we take b = ¢ == d = 0. Then we get the required corollary.

Corollary 10: Assume that (X, M,*) is a complete fuzzy cone metric space in which fuzzy
cone contractive sequence ate Cauchy and T:X — X satisfies b = ¢ = d in (8.1) then T

has a unique common fixed point in X.

1 L L
Proof: MTxTy.0 I=a (M(x,y,t) N 1)+b(M(x,Tx,t) h 1)

> (g~ )+ igrmes )

M(TX Ty,t) -1 a (M(xyt) )

+b [(M(x Tet) ) (M(y,lTy,t) B 1) + (M(y,}Fx.t) B 1)]
M(Tx Ty,t) -1 a (M(xyt) )
b [(M(xxt) ) (M(yTy,t) B 1) + (M(y%x,t) B 1)]

m —l=a (M(:y,t) B 1) tb [(M(y?x,t) N 1)]

1
M(TX,Ty,t)

IA

IA

—+

1< a+b(M( — 1).

Sincea+ b < 1. So, we get M(x,y,t) = 1. Thatisx =y

Thus T has unique common fixed point of X.
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