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Abstract 
 

The concept of fuzzy sets was introduced by Zadeh (1965) which marked the 

beginning of the evolution of fuzzy mathematics. The introduction of 

uncertainty in the theory of sets in a non-probabilistic manner opened up new 

possibilities for research in this field. Since then, many authors have explored 

the theory of fuzzy sets and its applications, leading to successful 

advancements in various fields such as mathematical programming, model 

theory, engineering sciences, image processing, and control theory. In this 

paper, we aim to improve and generalize some common fixed point theorems 

in fuzzy cone metric spaces, which is an extension of the well-known results 

given by Saif Ur Rahman and Hong Xu-Li (2s017). 

Keywords: Fuzzy metric space, Fuzzy Cone Metric Space, Fuzzy Cone 
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INTRODUCTION 

In 2007, Huang and Zhang proposed the concept of cone metric spaces, which involves 

substituting a real number with a Banach space. They also established some fixed point 

theorems for contractive mapping. Since then, numerous studies have focused on the 

issues related to cone metric spaces. 

      The fuzzy set theory was introduced by Zadeh (1965) there has been a great effort to 

obtain fuzzy analogues of classical theories. In 1970, Kramosil and Michalek, introduced 

the fuzzy metric spaces. Later on, George and Veeramani (1994) gave a stronger form of 

metric fuzziness. Some fixed point results for set valued mappings on fuzzy metric spaces 

were found in [M. Grabiec(1988),  Sadeghi (1960), Hadzic and Pap, E. (2002), and Kiani 

and Harad(2011)].    

In 2015, Oner et.al. Introduced the notation of fuzzy cone metric space, which is a 

generalization of the notation of fuzzy metric space by George and Veeramani (1994). 

They also presented some structural properties of fuzzy cone metric spaces and proved a 

fixed point theorem under a fuzzy cone contractive condition. Some fixed point theorems 

and common fixed point theorems concerning fuzzy cone metric spaces were obtained by 

Ali & kanna (2017)  & Priyobatra et al. (2016) also obtained some more properties in fuzzy 

cone metric spaces of results ([Oner, T, (2016)]).   

      In this article, we generalize and improve the results of Saif Ur, Rehman (2017) and 

obtain common fixed point theorem in fuzzy cone metric space for contractive condition. 

 

PRELIMINARY NOTES 

Definition 1 ([Schweizer, A. and Sklar, (2020)]): A binary operation ∗: [0,1] × [0,1] →

[0,1] is called a continuous t-norm if it satisfies the following conditions: 

(1) ∗ is commutative and associative 

(2) ∗ is continuous 

(3) 𝟏 ∗ 𝒂 = 𝒂 for all 𝒂 ∈ [𝟎, 𝟏] 

(4) 𝒂 ∗ 𝒃 ≤ 𝒄 ∗ 𝒅, whenever 𝒂 ≤ 𝒄 and 𝒃 ≤ 𝒅, for each 𝒂, 𝒃, 𝒄, 𝒅 ∈ [𝟎, 𝟏]. 
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Definition 2 ([George and Veeramani (1994) 4]):A fuzzy metric space is an ordered 

triple (𝑋, 𝑀,∗) such that 𝑋 is a non- empty set, ∗ is continuous t-norm and 𝑀 is a fuzzy set 

on 𝑋 × 𝑋 × (0, ∞) satisfying the following conditions, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑠, 𝑡 > 0 

(𝑖)  𝑀(𝑥, 𝑦, 𝑡) > 0 

(𝑖𝑖)  𝑀(𝑥, 𝑦, 𝑡) = 1 iff 𝑥 = 𝑦 

(𝑖𝑖𝑖)  𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡) 

(𝑖𝑣)  𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠) 

(𝑣) 𝑀(𝑥, 𝑦, . ): (0, ∞) → [0,1] is continuous. 

 

Definition 3 ([Huang and Zhang(2007)]): A subset P of E is called a cone if  

(a) P is closed, nonempty, and 𝑃 ≠ {𝜃} 

(b) If 𝑎, 𝑏 ∈ [0, ∞] and 𝑥, 𝑦 ∈ 𝑃, then 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃 

(c) If both 𝑥 ∈ 𝑃 and −𝑥 ∈ 𝑃, then = 𝜃 . 

 For a given cone 𝑃 ⊂ 𝐸, a partial ordering ≤ on Ε via 𝑃 is defined by 𝑥 ≤ 𝑦 if and only if 

𝑦 − 𝑥 ∈ 𝑃. 𝑥 < 𝑦  stands for 𝑥 ≤ 𝑦 and𝑥 ≠ 𝑦, while 𝑥 ≪ 𝑦 stand for 𝑦 − 𝑥 ∈ 𝑖𝑛𝑡(𝑝).  

Definition 4 ([Oner, T .et al. (2015)]):  A fuzzy cone metric space is a 3-tuple (𝑋, 𝑀,∗)  

such that 𝑃  is a cone of𝐸,𝑋 is a nonempty set, ∗ is a continuous t-norm and 𝑀 is a fuzzy 

set on 𝑋2 × 𝑖𝑛𝑡(𝑃). Satisfying the following conditions, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑡, 𝑠 ∈

𝑖𝑛𝑡(𝑃)  (𝑡ℎ𝑎𝑡 𝑖𝑠 𝑡 ≫ 0, 𝑠 ≫ 0) 

              1.    𝑀(𝑥, 𝑦, 𝑡) > 0 

              2.     𝑀(𝑥, 𝑦, 𝑡) = 1 𝑖𝑓𝑓 𝑥 = 𝑦 

              3.     𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡) 

              4.      𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠) 

               5.   𝑀(𝑥, 𝑦, . ): 𝑖𝑛𝑡(𝑝) → [0,1] is continuous. 

Definition 5 ([Oner, T .et al. (2015)]):  Let (𝑋, 𝑀,∗)  be a fuzzy cone metric space, 𝑥 ∈

𝑋 and {𝑥𝑛} be a sequence in 𝑋. Then, 

(1) {𝑥𝑛} is said to converge to 𝑥 if for 𝑡 ≫ 𝜗 and ∝∈ (0,1), there exist a natural  

             number 𝑛1such that 𝑀(𝑥𝑛, 𝑥, 𝑡) > 1−∝ for all𝑛 > 𝑛1. It is denoted as  

lim
𝑛→∞

𝑥𝑛 = 𝑥 ; 
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(2) {𝑥𝑛} is said to Cauchy sequence if for ∝∈ (0,1) and 𝑡 ≫ 𝜗, there exists natural  

              number 𝑛1 ∈ 𝑁 such that 𝑀(𝑥𝑛, 𝑥𝑚, 𝑡) > 1−∝ for all 𝑛, 𝑚 > 𝑛1; 

(3) (𝑋, 𝑀,∗) is said to be complete fuzzy cone metric space if every Cauchy  

             sequence is convergent in 𝑋; 

(4) {𝑥𝑛} is said to be fuzzy cone contractive if there exists ∝∈ (0,1) such that    

                            
1

𝑀(𝑥𝑛+1,𝑥𝑛+2,𝑡)
− 1 ≤∝ (

1

𝑀(𝑥𝑛,𝑥𝑛+1,𝑡)
− 1) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≫ 𝜗, 𝑛 ∈ 𝑁. 

Definition 6 ([Saif Ur Rehman and Hong-Xu Li. (2017),]).  Let (𝑋, 𝑀,∗)  be a fuzzy 

cone metric space. The fuzzy cone metric M is triangular if   

                             
1

𝑀(𝑥,𝑧,𝑡)
− 1 ≤  (

1

𝑀(𝑥,𝑦,𝑡)
− 1) + (

1

𝑀(𝑦,𝑧,𝑡)
− 1) 

For all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and each 𝑡 ≫ 𝜃. 

Theorem 7 [Saif Ur Rehman and Hong-Xu Li. (2017)]:  Let (𝑋, 𝑀,∗) be a complete 

fuzzy cone metric space in which fuzzy cone contractive sequence are Cauchy and 𝑇: 𝑋 →

𝑋 be a fuzzy cone contractive mapping. Satisfies 

1

𝑀(𝑇𝑥 , 𝑇𝑦, 𝑡)
− 1 ≤ 𝑎 (

1

𝑀(𝑥, 𝑦, 𝑡)
− 1) + 𝑏 (

1

𝑀(𝑥, 𝑇𝑥 , 𝑡)
− 1) 

                                                 +𝑐 (
1

𝑀(𝑦,𝑇𝑦,𝑡)
− 1) + 𝑑 (

1

𝑀(𝑦,𝑇𝑥,𝑡)
− 1)                     (7.1) 

And symmetrically 

1

𝑀(𝑇𝑥 , 𝑇𝑦, 𝑡)
− 1 ≤ 𝑎 (

1

𝑀(𝑥, 𝑦, 𝑡)
− 1) + 𝑏 (

1

𝑀(𝑥, 𝑇𝑥 , 𝑡)
− 1) 

                                                  +𝑐 (
1

𝑀(𝑦,𝑇𝑦,𝑡)
− 1) + 𝑑 (

1

𝑀(𝑥,𝑇𝑦,𝑡)
− 1)                     (7.2) 

For each 𝑥, 𝑦 ∈ 𝑋 and 𝑡 ≫ 𝜃 . Then T has a unique fixed point. 

 

MAIN RESULTS 

In this section we have extend and generalize the theorem 7 and obtain common fixed 

point result in fuzzy cone metric space. The main  results are as follows: 

Theorem 8. Let (𝑋, 𝑀,∗) be a complete fuzzy cone metric space in which fuzzy cone 

contractive sequence are Cauchy and 𝑀 is triangular and 𝑇1 ,𝑇2: 𝑋 → 𝑋 be a fuzzy cone 
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contractive mapping. Then, 𝑇1  and 𝑇2 have a unique common fixed point, under the 

following fuzzy cone contractive type conditions: 

                    
        1         

  𝑀(𝑇1𝑥,𝑇2𝑦,𝑡)
− 1 ≤ 𝑎 (

     1     

𝑀(𝑥,𝑦,𝑡)
− 1) + 𝑏 (

     1     

𝑀(𝑥,𝑇1𝑥,𝑡)
− 1) 

                                              +𝑐 (
     1     

𝑀(𝑦,𝑇2𝑦,𝑡)
− 1) + 𝑑 (

     1     

𝑀(𝑦,𝑇1𝑥,𝑡)
− 1)                  (8.1)  

and symmetrically  

                   
        1         

𝑀(𝑇1𝑥,𝑇2𝑦,𝑡)
− 1 ≤ 𝑎 (

     1     

𝑀(𝑥,𝑦,𝑡)
− 1) + 𝑏 (

     1     

𝑀(𝑥,𝑇1𝑥,𝑡)
− 1) 

                                            +𝑐 (
     1     

𝑀(𝑦,𝑇2𝑦,𝑡)
− 1) + 𝑑 (

     1     

𝑀(𝑥,𝑇2𝑦,𝑡)
− 1)                       (8.2) 

Where 𝑡 ≫ 𝜃, 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, ∞] with 𝑎 + 𝑏 + 𝑐 < 1. 

Proof : Let 𝑥0 ∈ 𝑋 and {𝑥2𝑛}  and  {𝑥2𝑛+1} be any two square in X, such that 

                                             𝑥2𝑛 = 𝑇1𝑥2𝑛−1=𝑇1
2𝑛 𝑥0 

                                                                  and 

                                                𝑥2𝑛+1 = 𝑇2𝑥2𝑛 = 𝑇2
2𝑛+1𝑥0  

Then by equation (8.1)for 𝑡 ≫ 𝜃, 𝑛 ≫ 1.   

          
        1         

𝑀(𝑥2𝑛,𝑥2𝑛+1,𝑡)
− 1 =  

        1         

𝑀(𝑇1𝑥2𝑛−1,𝑇2𝑥2𝑛,𝑡)
− 1   

                                    ≤ 𝑎 (
     1     

𝑀(𝑥2𝑛−1, 𝑥2𝑛, 𝑡)
− 1) + 𝑏 (

     1     

𝑀(𝑥2𝑛−1, 𝑇1𝑥2𝑛−1, 𝑡)
− 1) 

                                      +  𝑐 (
     1     

𝑀(𝑥2𝑛,𝑇2𝑥2𝑛,𝑡)
− 1) + 𝑑 (

     1     

𝑀(𝑥2𝑛,𝑇1𝑥2𝑛−1,𝑡)
− 1) 

                                       =  𝑎 (
     1     

𝑀(𝑥2𝑛−1,𝑥2𝑛,𝑡)
− 1) + 𝑏 (

     1     

𝑀(𝑥2𝑛−1,𝑥2𝑛,𝑡)
− 1) 

                                       +  𝑐 (
     1     

𝑀(𝑥2𝑛,𝑥2𝑛+1,𝑡)
− 1) + 𝑑 (

     1     

𝑀(𝑥2𝑛,𝑥2𝑛,𝑡)
− 1)    

   (1 − 𝑐) (
        1         

M(𝑥2𝑛,𝑥2𝑛+1,𝑡)
− 1) = 𝑎 + 𝑏 (

     1     

M(𝑥2𝑛−1,𝑥2𝑛,𝑡)
− 1) 

Implies that  

                    (
        1         

𝑀(𝑥2𝑛,𝑥2𝑛+1,𝑡)
− 1) =

𝑎+𝑏

(1−𝑐)
(

     1     

𝑀(𝑥2𝑛−1,𝑥2𝑛,𝑡)
− 1)  

Thus             (
        1         

𝑀(𝑥2𝑛,𝑥2𝑛+1,𝑡)
− 1) ≤ 𝑘 (

     1     

𝑀(𝑥2𝑛−1,𝑥2𝑛,𝑡)
− 1) 
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               Where 𝑘 =
(𝑎 + 𝑏)

(1 − 𝑐)
≤ 1  since   𝑎 + 𝑏 + 𝑐 < 1 

 Implies that          
1

 𝑀(𝑥2𝑛,𝑥2𝑛+1, 𝑡)
− 1 ≤ 𝑘 (

1

𝑀( 𝑥2𝑛−1 ,𝑥2𝑛, 𝑡)
− 1) 

                                                          ≤ ⋯ … … ≤  𝑘𝑛 (
1

𝑀( 𝑥0,𝑥1,𝑡)
− 1)  

Which means that {𝑥2𝑛} is a fuzzy cone contractive sequence, and we get 

                      lim
𝑛→∞

𝑀(𝑥2𝑛, 𝑥2𝑛+1, 𝑡) = 1 for 𝑡 ≫ 𝜃                                     (8.3) 

Noticing that M is triangular, then for all 𝑚 > 𝑛 ≥ 𝑛0 

           
1

 (𝑥2𝑛,𝑥2𝑚, 𝑡)
−1 ≤ (

1

𝑀( 𝑥2𝑛, 𝑥2𝑛+1, 𝑡)
− 1)+(

1

𝑀(  𝑥2𝑛+1, 𝑥2𝑛+2,𝑡)
− 1) 

                                  +……..+(
1

𝑀( 𝑥2𝑛−1, 𝑥2𝑛 𝑡)
− 1) 

                                  ≤ 𝑘𝑛 (
1

𝑀( 𝑥0 ,,𝑥1, 𝑡)
− 1) + 𝑘𝑛+1 (

1

𝑀( 𝑥0 , 𝑥1, 𝑡)
− 1) 

                                  +…...+.𝑘𝑚−1 (
1

𝑀( 𝑥0 , 𝑥1, 𝑡)
− 1) 

                                 ≤  (𝑘𝑛 + 𝑘𝑛+1 + ⋯ … … . . +𝑘𝑚−1) (
1

𝑀( 𝑥0 𝑥1, 𝑡)
− 1) 

                                  = 
𝑘𝑛

1−𝑘
(

1

𝑀( 𝑥0,𝑥1,𝑡)
− 1) →0 as 𝑛 → ∞. 

What yields that {𝑥2𝑛}  is a Cauchy sequence in Χ  since (Χ, M,∗) is complete. 

There exists  𝑤 ∈ Χ  such that 

                                           lim
𝑛→∞

𝑀(𝑥2𝑛, 𝑤, 𝑡) = 1 for 𝑡 ≫ 𝜃 

Since 𝑀 is triangular, we have 

                 
1

𝑀(𝑤,𝑇1𝑤,𝑡)
− 1 ≤ (

1

𝑀(𝑤,𝑥2𝑛,𝑡)
− 1) + (

1

𝑀(𝑥2𝑛,𝑇1𝑤,𝑡)
− 1) for 𝑡 ≫ 𝜃             

                                                                                                                              ( 8.4) 

Now, 

               
1

𝑀 (𝑥2𝑛,𝑇1𝑤,𝑡)
− 1 =  (

1

𝑀( 𝑥2𝑛,𝑇1 𝑥2𝑛−1, 𝑡)
− 1)+(

1

𝑀( 𝑇1𝑋2𝑛−1, 𝑇1𝑤,𝑡)
− 1) 
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                                         = (
1

𝑀( 𝑥2𝑛, 𝑥2𝑛,𝑡)
− 1)+(

1

𝑀( 𝑇1𝑥2𝑛−1𝑇1𝑤,𝑡)
− 1) 

                                         = (
1

𝑀( 𝑇1𝑥2𝑛−1𝑇1𝑤,𝑡)
− 1) 

                                         ≤ 𝑎 (
1

𝑀( 𝑥2𝑛−1, 𝑤, 𝑡)
− 1) + 𝑏 (

1

𝑀( 𝑥2𝑛−1, 𝑇1𝑥2𝑛−1, 𝑡)
− 1) 

                                         +𝑐 (
1

𝑀( 𝑤,𝑇1𝑤,𝑡)
− 1) + 𝑑 (

1

𝑀( 𝑤,𝑇1𝑥2𝑛−1,𝑡)
− 1) → 0 

                                           as 𝑛 → ∞ 

 This implies that 

            lim
𝑛→∞

𝑠𝑢𝑝 (
1

𝑀(𝑥2𝑛,𝑇1𝑤,𝑡)
− 1) − 1 ≤ 𝑐 (

1

𝑀(𝑤,𝑇1𝑤,𝑡)
− 1) for 𝑡 ≫  𝜃        (8.5) 

Together with equation (8.4) & (8.5), we get  

                                ⇒ 
1

𝑀(𝑤,𝑇1 𝑤,𝑡)
− 1 ≤ 𝑐 (

1

𝑀(𝑤,𝑇1𝑤,𝑡)
− 1)  for  𝑡 ≫  𝜃 

Since that 𝑐 < 1 and   𝑎 + 𝑏 + 𝑐 < 1. So,  𝑀(𝑤, 𝑇1𝑤, 𝑡) = 1. That is 𝑇1𝑤 = 𝑤  

Hence 𝑤 is a fixed point of 𝑇1. 

Similarly we can prove that 𝑇2𝑤 = 𝑤. Therefore,𝑇1𝑤 = 𝑤 =  𝑇2𝑤. 

So, 𝑤 is common fixed point of  𝑇1 and 𝑇2. 

Now, if 𝜇 is another common fixed point of 𝑇1 and 𝑇2. Then  

                    
1

𝑀(𝑇1𝑤,𝑇2𝜈,𝑡)
− 1 ≤ 𝑎 (

1

𝑀(𝑤,𝜈,𝑡)
− 1) + 𝑏 (

1

𝑀(𝑤,𝑇1𝑤,𝑡)
− 1) 

                                             +𝑐 (
1

𝑀(𝜈,𝑇2𝜈,𝑡)
− 1) + 𝑑 (

1

𝑀(𝜈,𝑇1𝑤,𝑡)
− 1) 

                                             = 𝑎 (
1

𝑀(𝑤,𝜈,𝑡)
− 1) + 𝑏 (

1

𝑀(𝑤,𝑤,𝑡)
− 1) 

                                             +𝑐 (
1

𝑀(𝜈,𝜈,𝑡)
− 1) + 𝑑 (

1

𝑀(𝜈,𝑤,𝑡)
− 1) 

                                            = 𝑎 + 𝑑 (
1

𝑀(𝜈,𝑤,𝑡)
− 1) 

                                             ≤ 𝑎 + 𝑑 (
1

𝑀(𝜈,𝑤,𝑡)
− 1) 

Since 𝑎 + 𝑑 < 1 . So, we get  𝑀(𝑣, 𝑤, 𝑡) = 1. that is 𝑣 = 𝑤. 
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Thus 𝑤 is the unique common fixed point of 𝑇1 and 𝑇2 . 

These completed the proof of the Theorem. 

 

Corollary 9: Let (𝑋, 𝑀,∗) be a complete fuzzy cone metric space in which fuzzy cone 

contractive sequence are Cauchy and 𝑀 is triangular and 𝑇: 𝑋 → 𝑋 be a fuzzy cone 

contractive mapping. Then, 𝑇1  and 𝑇2 have a unique common  fixed point, under the 

following fuzzy cone contractive type conditions: 

        1         

M(𝑇1x, 𝑇2y, t)
− 1 ≤ a (

     1     

M(x, y, t)
− 1) 

 

Proof: - If we take 𝑏 = 𝑐 == 𝑑 = 0. Then we get the required corollary. 

Corollary 10: Assume that (𝑋, 𝑀,∗) is a complete fuzzy cone metric space in which fuzzy 

cone contractive sequence are Cauchy and 𝑇: 𝑋 → 𝑋 satisfies 𝑏 = 𝑐 = 𝑑 in (8.1) then 𝑇 

has a unique common fixed point in 𝑋. 

Proof: 
        1         

M(Tx,Ty,t)
− 1 ≤ a (

     1     

M(x,y,t)
− 1)+b(

     1     

M(𝑥,𝑇𝑥,𝑡)
− 1) 

+b (
     1     

M(𝑦, 𝑇y, t)
− 1) + b (

     1     

M(y, Tx, t)
− 1) 

          
        1         

M(Tx,Ty,t)
− 1 ≤ a (

     1     

M(x,y,t)
− 1) 

                                +𝑏 [(
     1     

M(𝑥,𝑇𝑥,𝑡)
− 1) + (

     1     

M(𝑦,𝑇y,t)
− 1) + (

     1     

M(y,Tx,t)
− 1)] 

           
        1         

M(Tx,Ty,t)
− 1 ≤ a (

     1     

M(x,y,t)
− 1) 

                                 +𝑏 [(
     1     

M(𝑥,𝑥,𝑡)
− 1) + (

     1     

M(𝑦,y,t)
− 1) + (

     1     

M(y,x,t)
− 1)] 

         
        1         

M(Tx,Ty,t)
− 1 ≤ a (

     1     

M(x,y,t)
− 1) + 𝑏 [(

     1     

M(y,x,t)
− 1)] 

       
        1         

M(Tx,Ty,t)
− 1 ≤ a + 𝑏 (

     1     

M(x,y,t)
− 1). 

Since a + 𝑏 < 1. So, we get  𝑀(𝑥, 𝑦, 𝑡) = 1. That is 𝑥 = 𝑦 

Thus 𝑇 has unique common fixed point of 𝑋. 
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